The Times Australia
Fisher and Paykel Appliances
The Times World News

.

Some of Earth’s most ancient lifeforms can live on hydrogen – and we can learn from their chemical powers

  • Written by Pok Man Leung, Research Fellow in Microbiology, Monash University
Some of Earth’s most ancient lifeforms can live on hydrogen – and we can learn from their chemical powers

Three-quarters of all matter in the universe is made up of hydrogen. The young Earth was also rich in hydrogen, thanks to fierce geological and volcanic activity.

Just as stars burn hydrogen to produce heat and light through nuclear reactions, life[1] emerged by extracting energy from this simple molecule via chemical reactions.

Some of these early life forms were archaea: an enigmatic third form of life only discovered in the 1970s. (The other two forms are bacteria and eukaryotes, the group that includes all animals, plants and fungi.)

We have studied thousands of species of archaea to understand how they have thrived for billions of years on our constantly changing planet. In their genetic blueprints we found instructions for producing special enzymes (called hydrogenases) to harvest energy from hydrogen gas, which lets them survive in some of the most punishing environments on Earth. Our latest research is published in Cell[2] and Nature Communications[3].

A life powered by hydrogen

Archaea are found in places where no other life can survive. For example, some flourish in boiling hot springs where the water is so acidic it would dissolve iron.

Here, hydrogen is continually formed from the geothermal processes in Earth’s crust. Archaea devour this hydrogen to repair their bodies and even sometimes grow in otherwise deadly conditions.

We found some archaea can even make use of the minute amounts of hydrogen present in the air as an additional food source. This ability would likely help them survive transport through the atmosphere from one hydrogen-rich hot spring to another.

Photo of three people in lab coats looking at a computer screen showing some kind of complex molecular diagram
The authors investigating hydrogenases in archaea. Julia Veitch

Surviving in the dark

Many archaea are not found on the surface, but live a humble life far underground. Plants and animals can’t survive in this environment because there is no light or oxygen to sustain them.

Archaea have found a solution: they break down deeply buried organic matter from plant or animal remains. They do so through a process called “hydrogen-forming fermentation”.

Just as in the process of beer fermentation yeasts convert sugar to produce carbon dioxide, these dark-dwelling archaea convert organic matter to produce hydrogen gas.

This process releases some energy, but only a little. To survive, some archaea form ultra-small cells to minimize their energy needs. Many are also parasites of other microbes, stealing organic matter to fuel their own growth.

Archaea making methane

Many archaea live in extreme environments, but some find a warm home in animals.

In the animal intestine, many bacteria help digest food through hydrogen-forming fermentation. But a group of archaea known as methanogens eat hydrogen and breathe out the potent greenhouse gas: methane.

Methanogens are especially abundant and active in the guts of cattle, which are responsible for around one-third of human-caused methane emissions[4]. We have also been working on ways to inhibit the activity of gut methanogens[5] to reduce these emissions.

These same archaea are also responsible for methane emissions from lots of other sources, from termite mounds[6] to thawing permafrost[7] and even trees[8].

Learning from archaea’s hydrogen economy

As our societies try to move away from fossil fuels[9], we may be able to learn from the hydrogen economy of archaea, which has thrived for billions of years.

Much of Earth’s hydrogen is tied up in water. (It’s the H in H₂O.) To extract the hydrogen and work with it, industries currently need expensive catalysts such as platinum[10]. However, there are also biological hydrogen catalysts, enzymes called hydrogenases, that don’t require precious metals and work under a wider range of conditions.

We have found that some archaea make highly streamlined hydrogenases[11]. These enzymes can form a basis for more efficient and economical hydrogen catalysts.

A diagram showing a complex molecule, labelled 'Ultraminimal H2-producing [FeFe]-hydrogenases'. A diagram showing a streamlined hydrogenase enzyme from archaea. Rhys Grinter

Hydrogen and the history of life

Perhaps hydrogen is a key to our future energy. But it’s worth mentioning that hydrogen also helps explains our past.

The first eukaryotes (the ancestors of all animals, plants and fungi) evolved some two billion years ago, when an archaeal cell and a bacterial cell merged together[12].

Why did they merge? The most widely accepted theory, known as “the hydrogen hypothesis”, suggests the merger of two cells allow them to more efficiently exchange hydrogen gas. A likely scenario[13] is the archaeal cell survived by making hydrogen, which the bacterial cell then ate to make its own energy.

Eventually, this process gave rise to all eukaryotes over a billion years of evolution. Most modern eukaryotes, including humans, have since lost the ability to use hydrogen.

But traces of the ancient archaea and bacteria still exist. The body of our cells come from archaea, while the energy-producing organelles inside the cells called mitochondria are derived from bacteria.

Hydrogen may be simple, but it has helped create much of the complexity on Earth.

References

  1. ^ life (theconversation.com)
  2. ^ Cell (www.cell.com)
  3. ^ Nature Communications (www.nature.com)
  4. ^ one-third of human-caused methane emissions (www.unep.org)
  5. ^ inhibit the activity of gut methanogens (www.nature.com)
  6. ^ termite mounds (www.nature.com)
  7. ^ thawing permafrost (theconversation.com)
  8. ^ trees (theconversation.com)
  9. ^ move away from fossil fuels (theconversation.com)
  10. ^ expensive catalysts such as platinum (theconversation.com)
  11. ^ archaea make highly streamlined hydrogenases (www.cell.com)
  12. ^ merged together (theconversation.com)
  13. ^ scenario (www.nature.com)

Read more https://theconversation.com/some-of-earths-most-ancient-lifeforms-can-live-on-hydrogen-and-we-can-learn-from-their-chemical-powers-231382

Active Wear

Times Magazine

End-of-Life Planning: Why Talking About Death With Family Makes Funeral Planning Easier

I spend a lot of time talking about death. Not in a morbid, gloomy way—but in the same way we d...

YepAI Joins Victoria's AI Trade Mission to Singapore for Big Data & AI World Asia 2025

YepAI, a Melbourne-based leader in enterprise artificial intelligence solutions, announced today...

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an onli...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beau...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data anal...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right c...

The Times Features

End-of-Life Planning: Why Talking About Death With Family Makes Funeral Planning Easier

I spend a lot of time talking about death. Not in a morbid, gloomy way—but in the same way we d...

Temu explained: How it really works

What Temu is doing to small retailers worldwide Temu has blitzed its way into shopping feeds fr...

Is Laminate a Good Option For Kitchen Benchtops?

When it comes to renovating your kitchen, one of the most important choices you’ll make is your be...

Albanese Government failing to defend the rights of ex-service personnel

The Albanese Government is failing to defend the rights of ex-service personnel to seek a review of ...

Increase your holdings and hold your increases from a wisely diverse investment portfolio.

What comes to your mind when I ask about which investments are most important to you? I imagine we w...

Canberra Just Got a Glow Up: Inside Kingpin’s Dazzling New Attractions

Canberra’s entertainment scene just levelled up. Kingpin entertainment, Australia’s home of immers...

The Capsule CEO: Ashley Raso’s Reinvention from Property Developer to Fashion Founder

From property developer to creative founder, Raso positions Capsule WD as the wardrobe system resh...

Yellow Canary partners with global payroll audit leader Celery to bring pre-payroll review technology to Australia

Payroll compliance is becoming tougher for Australian employers. Underpayment cases continue to do...

Noticing These 5 Issues? Contact an Emergency Plumber Now

The invisible arteries running through homes, plumbing systems, streamline daily life discreetly...