The Times Australia
The Times World News

.
Times Media

.

Using photos to create 3D models is helping us understand – and protect – complex marine environments

  • Written by Professor James J Bell, Professor of Marine Biology, Te Herenga Waka — Victoria University of Wellington

Measuring the impact of different events, such as marine heatwaves, on the abundance of marine organisms is not easy. Biological communities naturally change over time and between different locations.

Scientists need to untangle these natural changes from those caused by humans and come up with a new approach to do this.

Marine biologists have traditionally monitored underwater cliffs or coral reefs by estimating population sizes in just a small area of those environments.

One traditional method involves laying a tape measure on the reef and determining what was under the tape at regular intervals. Another is to take pictures of “quadrats” – squares of a known area – and working out the area covered by different organisms later.

However, these methods only provide an estimate for a very small area of the total reef, covering a limited proportion of the animals and plants present.

They also provide limited information on the three-dimensional (3D) reef complexity and structure created by reef organisms, such as corals and sponges, which are key to supporting high biodiversity[1].

Read more: Loss, decay and bleaching: why sponges may be the ‘canary in the coal mine’ for impacts of marine heatwaves[2]

Our new research[3] shows how modern photographic methods can be used to measure coral reef habitat complexity, and the 3D nature of reefs.

This information was then used to assess the impacts of changes from coral-dominated reefs to sponge-dominated reefs[4] on the spaces available for fish and other organisms to live.

Here’s how it works.

An art and a science

Photogrammetry – a technique where 3D information is extracted from photographs – is both an art and science. The process involves taking a large number of images of an object or area from different angles. Using specialised algorithms we can then analyse and convert these pictures into 3D digital models.

These models can be appropriately scaled to real-world dimensions, allowing accurate measurements of organisms.

An example of a 3D reconstructed black coral.

While photogrammetry is not new, its application to marine science has increased in recent years[5]. It is completely changing the way we can monitor marine environments and measure human impacts.

However, there are many other ways broader photogrammetric tools can be used, from estimating the size of whales[6] to developing realistic simulations or virtual reality experiences for education.

Our recently published study from Indonesia[7] used photogrammetry to estimate the potential impacts of changes from coral-dominated to sponge-dominated tropical reefs on reef structural complexity.

Read more: The Irish lough that offers a window into the deep sea[8]

The study compared the structural complexity of coral and sponge-dominated areas of a coral reef. By using photogrammetry, we were able to better understand the different factors that contributed to the coral’s structural complexity in a way that would not be possible from traditional 2D photographs.

This study found sponge-dominated reefs had fewer of the smallest spaces for fish and other organisms to live, whereas coral-dominated reefs had fewer larger spaces.

This information is important. The smallest spaces on coral reefs are occupied by small fish and other species that feed animals higher up the food chain. As coral reefs lose these small refuge spaces, they also lose the ability to support biodiversity.

Going bigger

While the Indonesian study examined only small sections of the reef, the use of photogrammetry for monitoring and mapping marine ecosystems is expanding rapidly.

Thanks to modern hardware and software solutions, it is now possible to rapidly create models for much larger areas. And thanks to high-resolution photography, even the smallest animals can be identified in the models.

These models are complementing the use of traditional sampling methods that only estimate the abundances of organisms in a small area of a reef. But we also have the potential to now sample entire reefs.

As models of reefs derived from photogrammetry are 3D, there are many different new sources of information that can be collected, such as accurate surface areas and volumes of organisms.

For many organisms, like sponges and corals, surface areas and volumes are more important in measuring their ecological importance than just the amount of reef they cover.

An example of the Fiordland underwater environment rendered through a game engine, and ready to be used for VR applications.

Moreover, 3D models of large areas can be oriented and scaled or geo-referenced, essentially creating all the characteristics of a typical map. This makes finding previously surveyed areas much easier.

The overall result is better characterisation of marine communities. This makes it easier to monitor and visualise changes, and the effects of different factors, such as marine heatwaves.

Finally, scaled 3D representations can be created for complex organisms, meaning growth and shape changes can be more accurately measured. This provides a greater understanding of how environmental change affects organisms.

Visualising changes in biodiversity

Virtual reality has long been used to provide access to marine environments without getting wet. This has been done largely for education, outreach and training opportunities.

But 3D models created from photogrammetry provide new and exciting opportunities to engage the public. People can now interact with the environment, experiencing new worlds and points of view, while learning and increasing their environmental consciousness.

The application of 3D models derived from underwater photogrammetry has great potential for the monitoring of marine environments and detecting the impact of humans.

These models represent a transformative shift in the way information is gathered in marine ecosystems. As technology develops further they will support more extensive marine monitoring and more effective management.

An example of a 3D model of Breaker Bay Reef in Wellington, New Zealand.

Read more https://theconversation.com/using-photos-to-create-3d-models-is-helping-us-understand-and-protect-complex-marine-environments-221111

The Times Features

Will the Wage Price Index growth ease financial pressure for households?

The Wage Price Index’s quarterly increase of 0.8% has been met with mixed reactions. While Australian wages continue to increase, it was the smallest increase in two and a half...

Back-to-School Worries? 70% of Parents Fear Their Kids Aren’t Ready for Day On

Australian parents find themselves confronting a key decision: should they hold back their child on the age border for another year before starting school? Recent research from...

Democratising Property Investment: How MezFi is Opening Doors for Everyday Retail Investors

The launch of MezFi today [Friday 15th November] marks a watershed moment in Australian investment history – not just because we're introducing something entirely new, but becaus...

Game of Influence: How Cricket is Losing Its Global Credibility

be losing its credibility on the global stage. As other sports continue to capture global audiences and inspire unity, cricket finds itself increasingly embroiled in political ...

Amazon Australia and DoorDash announce two-year DashPass offer only for Prime members

New and existing Prime members in Australia can enjoy a two-year membership to DashPass for free, and gain access to AU$0 delivery fees on eligible DoorDash orders New offer co...

6 things to do if your child’s weight is beyond the ideal range – and 1 thing to avoid

One of the more significant challenges we face as parents is making sure our kids are growing at a healthy rate. To manage this, we take them for regular check-ups with our GP...

Times Magazine

How To Pack Shoes And Hats For Moving

Packing your shoes and hats for a move can seem like a daunting task. But with a little planning and organisation, it can be done quickly and easily. Here are some tips from removalists Brisbane specialists to help you get started.  Start As Ear...

Sydney's Finest: How to Identify a Top-Tier SEO Company

In the dynamic realm of digital marketing, the success of your online presence relies heavily on effective search engine optimisation (SEO). A pivotal force in this journey is the SEO company you choose. In Sydney's competitive business landscape...

10 Essay Help Tips to Share with Friends

Are you someone struggling with writing essays? A well-written essay is sometimes a challenging task. But you are not alone in the journey of essay writing.  You can't always create an interesting essay as it calls for a flow of creativity. A lot ...

Why Your Business Needs Web Experts: Benefits of Localized Web Development

In today's digital age, having a strong online presence is crucial for businesses of all sizes. A well-designed website is no longer a luxury but a necessity. However, creating and maintaining an effective website requires specialized skills and kn...

Choosing Between an SEO Consultant and Agency: What You Need to Know in Australia

In the bustling world of digital marketing in Australia, Search Engine Optimisation (SEO) plays a vital role. Whether you're a small business owner or part of a larger organisation, ensuring your online presence is optimised can't be overstated. Wi...

The Top 10 Highest-Scoring Matches in the Champions League

The 7:0 victory of Olympique Marseille over MŠK Žilina was the biggest away win in the history of the Champions League. But far from being the highest-scoring match in this prestigious competition. Here's our top ten. Feyenoord Rotterdam – KR Reykja...