The Times Australia
The Times World News

.

How lab-grown hybrid lifeforms bamboozle scientific ethics

  • Written by Julian Koplin, Lecturer in Bioethics, Monash University & Honorary fellow, Melbourne Law School, Monash University
how lab-grown hybrid lifeforms bamboozle scientific ethics

Earlier this month, scientists at the Guangzhou Institutes of Biomedicine and Health announced[1] they had successfully grown “humanised” kidneys inside pig embryos.

The scientists genetically altered the embryos to remove their ability to grow a kidney, then injected them with human stem cells. The embryos were then implanted into a sow and allowed to develop for up to 28 days.

The resulting embryos were made up mostly of pig cells (although some human cells were found throughout their bodies, including in the brain). However, the embryonic kidneys were largely human.

This breakthrough suggests it may soon be possible to generate human organs inside part-human “chimeric” animals. Such animals could be used for medical research or to grow organs for transplant, which could save many human lives.

But the research is ethically fraught. We might want to do things to these creatures we would never do to a human, like kill them for body parts. The problem is, these chimeric pigs aren’t just pigs – they are also partly human.

If a human–pig chimera were brought to term, should we treat it like a pig, like a human, or like something else altogether?

Maybe this question seems too easy. But what about the idea[2] of creating monkeys with humanised brains?

Chimeras are only one challenge among many

Other areas of stem cell science raise similarly difficult questions.

In June, scientists created “synthetic embryos[3]” – lab-grown embryo models that closely resemble normal human embryos. Despite the similarities, they fell outside the scope of legal definitions of a human embryo in the United Kingdom (where the study took place).

Like human–pig chimeras, synthetic embryos straddle two distinct categories: in this case, stem cell model and human embryo. It is not obvious how they should be treated.

In the past decade, we have also seen the development of increasingly sophisticated human cerebral organoids[4] (or “lab-grown mini-brains[5]”).

Unlike synthetic embryos, cerebral organoids don’t mimic the development of a whole person. But they do mimic the development of the part that stores our memories, thinks our thoughts, and makes conscious experience possible.

A microscope image shows a grid of squares covered with an irregular growth of strand-like neurons.
A network of neural cells grown on an array of electrodes to produce a ‘biological computer chip’. Cortical Labs[6]

Most scientists think current “mini-brains” are not conscious[7], but the field is developing rapidly. It is not far-fetched to think a cerebral organoid will one day “wake up”.

Complicating the picture even further are entities that combine human neurons with technology – like DishBrain[8], a biological computer chip made by Cortical Labs in Melbourne.

How should we treat these in vitro brains? Like any other human tissue culture, or like a human person? Or perhaps something in between[9], like a research animal?

A new moral framework

It might be tempting to think we should settle these questions by slotting[10] these[11] entities[12] into one category or another: human or animal, embryo or model, human person or mere human tissue.

This approach would be a mistake. The confusion sparked by chimeras, embryo models, and in vitro brains shows these underlying categories no longer make sense.

Read more: As scientists move closer to making part human, part animal organisms, what are the concerns?[13]

We are creating entities that are neither one thing nor the other. We cannot solve the problem by pretending otherwise.

We would also need good reasons to classify an entity one way or another.

Should we count the proportion of human cells to determine whether a chimera counts as an animal or a human? Or should it matter where the cells are located? What matters more, brain or buttocks? And how can we work this out?

Moral status

Philosophers would say these are questions about “moral status[14]”, and they have spent decades deliberating on what kinds of creatures we have moral duties to, and how strong these duties are. Their work can help us here.

For example, utilitarian philosophers see moral status as a matter of whether a creature has any interests (in which case it has moral status), and how strong those interests are (stronger interests matter more than weaker ones).

On this view, so long as an embryo model or brain organoid lacks consciousness, it will lack moral status. But if it develops interests, we need to take these into account.

Read more: Networks of silver nanowires seem to learn and remember, much like our brains[15]

Similarly, if a chimeric animal develops new cognitive abilities, we need to reconsider our treatment of it. If a neurological chimera comes to care about its life as much as a typical human does, then we should hesitate to kill it just as much as we would hesitate to kill a human.

This is just the beginning of a bigger discussion. There are other accounts of moral status, and other ways of applying them to the entities stem cell scientists are creating.

But thinking about moral status sets us down the right path. It fixes our minds on what is ethically significant, and can begin a conversation we badly need to have.

References

  1. ^ announced (www.sciencedaily.com)
  2. ^ the idea (link.springer.com)
  3. ^ synthetic embryos (www.theguardian.com)
  4. ^ human cerebral organoids (thebiologist.rsb.org.uk)
  5. ^ lab-grown mini-brains (www.nature.com)
  6. ^ Cortical Labs (www.scienceinpublic.com.au)
  7. ^ conscious (www.cell.com)
  8. ^ DishBrain (www.monash.edu)
  9. ^ something in between (pubmed.ncbi.nlm.nih.gov)
  10. ^ slotting (www.science.org)
  11. ^ these (blogs.bmj.com)
  12. ^ entities (www.nuffieldbioethics.org)
  13. ^ As scientists move closer to making part human, part animal organisms, what are the concerns? (theconversation.com)
  14. ^ moral status (plato.stanford.edu)
  15. ^ Networks of silver nanowires seem to learn and remember, much like our brains (theconversation.com)

Read more https://theconversation.com/pigs-with-human-brain-cells-and-biological-chips-how-lab-grown-hybrid-lifeforms-bamboozle-scientific-ethics-213357

Times Magazine

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Science Behind Reverse Osmosis and Why It Matters

What is reverse osmosis? Reverse osmosis (RO) is a water purification process that removes contaminants by forcing water through a semi-permeable membrane. This membrane allows only water molecules to pass through while blocking impurities such as...

The Times Features

The Role of Your GP in Creating a Chronic Disease Management Plan That Works

Living with a long-term condition, whether that is diabetes, asthma, arthritis or heart disease, means making hundreds of small decisions every day. You plan your diet against m...

Troubleshooting Flickering Lights: A Comprehensive Guide for Homeowners

Image by rawpixel.com on Freepik Effectively addressing flickering lights in your home is more than just a matter of convenience; it's a pivotal aspect of both home safety and en...

My shins hurt after running. Could it be shin splints?

If you’ve started running for the first time, started again after a break, or your workout is more intense, you might have felt it. A dull, nagging ache down your shins after...

Metal Roof Replacement Cost Per Square Metre in 2025: A Comprehensive Guide for Australian Homeowners

In recent years, the trend of installing metal roofs has surged across Australia. With their reputation for being both robust and visually appealing, it's easy to understand thei...

Why You’re Always Adjusting Your Bra — and What to Do Instead

Image by freepik It starts with a gentle tug, then a subtle shift, and before you know it, you're adjusting your bra again — in the middle of work, at dinner, even on the couch. I...

How to Tell If Your Eyes Are Working Harder Than They Should Be

Image by freepik Most of us take our vision for granted—until it starts to let us down. Whether it's squinting at your phone, rubbing your eyes at the end of the day, or feeling ...