The Times Australia
The Times World News

.

Slip, slop, slurp! The surprising science of sunscreen, sand and ice cream

  • Written by Shane Keating, Senior Lecturer in Mathematics and Oceanography, UNSW
Slip, slop, slurp! The surprising science of sunscreen, sand and ice cream

Ahh, summer at the beach! The sun on your face, sand between your toes, an ice cream in your hand.

For scientists young and old, a trip to the beach is also a perfect opportunity to explore the peculiar properties of some fascinating fluids.

Through thick and thin

Take sunscreen. When you first squeeze sunscreen from the bottle, it spreads easily over your skin, providing an even protective layer against the Sun’s rays. But once on your skin, sunscreen gains a thicker consistency – it has higher viscosity – preventing it from dripping off.

Read more: Explainer: how does sunscreen work, what is SPF and can I still tan with it on?[1]

Viscosity is the ability of a fluid to keep its shape when a force is applied. Sunscreen is what’s called a shear-thinning fluid, which means rubbing it makes its viscosity decrease so it flows more freely.

This effect typically occurs in fluids containing chain-like molecules called polymers. At rest, the polymers are tangled up in an irregular pattern; but when they are pushed around, they rearrange themselves into layers that slide past each other more easily.

Sunscreen is a ‘shear-thinning fluid’, which means it flows more easily under pressure. Shutterstock

Shear-thinning fluids are quite common. Ketchup is a classic example: it has high viscosity at rest, making it stick to the sides of the bottle until you shake it so its viscosity decreases and it flows out the nozzle.

When the ketchup lands on your plate, its viscosity increases again so it forms a satisfying dollop. (If this is starting to make your mouth water, you’ll be interested to know that saliva is also a shear-thinning fluid.)

Footprints in the sand

The opposite of a shear-thinning fluid is a shear-thickening fluid, a material whose viscosity increases with applied force.

A familiar example is very wet sand: if you pick up a handful, it will flow between your fingers like grainy custard. When you squeeze it, however, the sand becomes firm and, counter-intuitively, appears dry.

This behaviour, called the wet-sand effect, occurs because the compressive force of your hand pushes apart tiny grains of sand, creating space that lets water drain away from the surface.

Wet sand is a ‘shear-thickening fluid’: under pressure (like from a footstep) it becomes firmer and less runny. Shutterstock

The same effect allows you to run on wet sand, producing firm and dry patches where your feet land. But if you stand still and gently wiggle your toes, the wet sand reverts to a liquid state, allowing your feet to sink in – and make a pleasing slurp when you pull them out.

Newton on the beach

Simpler fluids, such as water, have a more or less constant viscosity. These are called Newtonian fluids, after Isaac Newton, who first wrote down the mathematical law to describe them in his famous 1687 book Principia.

To understand viscosity, imagine drinking water through a straw. When you suck, you create lower pressure at the top of the straw than the bottom, drawing water upwards.

The fluid near the walls of the straw experiences friction, so it flows more slowly than fluid near the centre. Newton reasoned the fluid separates into thin layers that slide over each other with a relative speed that depends on the applied force.

Read more: Kitchen Science: the many wonders of humble flour[2]

The viscosity measures the amount of friction between these different layers. The greater the viscosity (think of a milkshake), the more force you must apply to suck the fluid up the straw.

Newton’s law of viscosity, as it is known, is a mathematical ideal. No real fluid behaves exactly this way, but common fluids like water, alcohol, and vegetable oil come pretty close.

By contrast, non-Newtonian fluids — including shear-thinning and shear-thickening fluids — do not obey Newton’s law of viscosity: their viscosity changes depending on how much force is applied to them.

The scoop on ice cream

Time for some ice cream. Ice cream is a frozen mixture of cream, milk, sugar, and flavourings, but it is the unique behaviour of cream that is responsible for the dribbly joy of really good ice cream.

Cream is peculiar stuff. It is the fat-enriched portion of milk, separated from its watery base.

The resulting emulsion of fat globules and a small amount of liquid gives cream its silkiness. When cream is whisked, the applied force breaks the membranes of the fat globules, which glom together around trapped air, producing a suspension of bubbles and cream: whipped cream.

The light, silky texture of ice cream is all due to tiny air bubbles trapped inside little globules of cream. Shutterstock

Whipped cream is a type of non-Newtonian fluid called a Bingham plastic: at rest, it is semi-solid, forming stiff peaks that are perfect for spooning onto strawberries or scones. But under sufficient force, it can flow like a liquid: through the nozzle of a can of instant whipped cream, for example.

As anyone who has made whipped cream by hand knows, the key ingredient is time. The transformation from liquid to semi-solid is caused by applying force over a period of time.

Air bubbles trapped in the cream give ice cream its pillowy softness. In fact, air can make up to 50% of the total volume of ice cream, which explains why it is less dense than water – and why you can use it to make an ice cream float.

Fantastic fluids

Non-Newtonian fluids are found in all sorts of useful substances from biofuels to body armour to blood plasma, and there is still much about them to discover. As Isaac Newton said:

To myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

What better way to spend a summer day?

Read more: The story of a wave: from wind-blown ripples to breaking on the beach[3]

Read more https://theconversation.com/slip-slop-slurp-the-surprising-science-of-sunscreen-sand-and-ice-cream-169155

Times Magazine

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Times Features

What is creatine? What does the science say about its claims to build muscle and boost brain health?

If you’ve walked down the wellness aisle at your local supermarket recently, or scrolled the latest wellness trends on social media, you’ve likely heard about creatine. Creati...

Whole House Water Filters: Essential or Optional for Australian Homes?

Access to clean, safe water is something most Australians take for granted—but the reality can be more complex. Our country’s unique climate, frequent droughts, and occasional ...

How Businesses Turn Data into Actionable Insights

In today's digital landscape, businesses are drowning in data yet thirsting for meaningful direction. The challenge isn't collecting information—it's knowing how to turn data i...

Why Mobile Allied Therapy Services Are Essential in Post-Hospital Recovery

Mobile allied health services matter more than ever under recent NDIA travel funding cuts. A quiet but critical shift is unfolding in Australia’s healthcare landscape. Mobile all...

Sydney Fertility Specialist – Expert IVF Treatment for Your Parenthood Journey

Improving the world with the help of a new child is the most valuable dream of many couples. To the infertile, though, this process can be daunting. It is here that a Sydney Fertil...

Could we one day get vaccinated against the gastro bug norovirus? Here’s where scientists are at

Norovirus is the leading cause[1] of acute gastroenteritis outbreaks worldwide. It’s responsible for roughly one in every five cases[2] of gastro annually. Sometimes dubbed ...