The Times Australia
The Times World News

.
Times Media

.

Mathematical discoveries take intuition and creativity – and now a little help from AI

  • Written by Geordie Williamson, Professor of Mathematics, University of Sydney
Mathematical discoveries take intuition and creativity – and now a little help from AI

Research in mathematics is a deeply imaginative and intuitive process. This might come as a surprise for those who are still recovering from high-school algebra.

What does the world look like at the quantum scale? What shape would our universe take if we were as large as a galaxy? What would it be like to live in six or even 60 dimensions? These are the problems that mathematicians and physicists are grappling with every day.

To find the answers, mathematicians like me try to find patterns that relate complicated mathematical objects by making conjectures (ideas about how those patterns might work), which are promoted to theorems if we can prove they are true. This process relies on our intuition as much as our knowledge.

Over the past few years I’ve been working with experts at artificial intelligence (AI) company DeepMind to find out whether their programs can help with the creative or intuitive aspects of mathematical research. In a new paper published in Nature[1], we show they can: recent techniques in AI have been essential to the discovery of a new conjecture and a new theorem in two fields called “knot theory” and “representation theory”.

Machine intuition

Where does the intuition of a mathematician come from? One can ask the same question in any field of human endeavour. How does a chess grandmaster know their opponent is in trouble? How does a surfer know where to wait for a wave?

The short answer is we don’t know. Something miraculous seems to happen in the human brain. Moreover, this “miraculous something” takes thousands of hours to develop and is not easily taught.

The AlphaGo software’s defeat of Lee Sedol in 2016 is regarded as one of the most striking early examples of a machine displaying something like human intuition. Lee Jin-man / AP

The past decade has seen computers display the first hints of something like human intuition. The most striking example of this occurred in 2016, in a Go match between DeepMind’s AlphaGo program and Lee Sedol, one of the world’s best players.

AlphaGo won 4–1, and experts observed that some of AlphaGo’s moves displayed human-level intuition. One particular move (“move 37”[2]) is now famous as a new discovery in the game.

Read more: AI has beaten us at Go. So what next for humanity?[3]

How do computers learn?

Behind these breakthroughs lies a technique called deep learning. On a computer one builds a neural network – essentially a crude mathematical model of a brain, with many interconnected neurons.

At first, the network’s output is useless. But over time (from hours to even weeks or months), the network is trained, essentially by adjusting the firing rates of the neurons.

Such ideas were tried in the 1970s with unconvincing results. Around 2010, however, a revolution occurred[4] when researchers drastically increased the number of neurons in the model (from hundreds in the 1970s to billions today).

One of the first neural networks, the Mark I Perceptron, was built in the 1950s. The goal was to classify digital images, but results were disappointing. Cornell University

Traditional computer programs struggle with many tasks humans find easy, such as natural language processing (reading and interpreting text), and speech and image recognition.

With the deep learning revolution of the 2010s, computers began performing well on these tasks. AI has essentially brought vision and speech to machines.

Training neural nets requires huge amounts of data. What’s more, trained deep learning models often function as “black boxes”. We know they often give the right answer, but we usually don’t know (and can’t ascertain) why.

Deep learning systems often function as ‘black boxes’: data goes in and data comes out, but we have difficulty making sense of what happens in between. Shutterstock

A lucky encounter

My involvement with AI began in 2018, when I was elected a Fellow of the Royal Society. At the induction ceremony in London I met Demis Hassabis, chief executive of DeepMind.

Over a coffee break we discussed deep learning, and possible applications in mathematics. Could machine learning lead to discoveries in mathematics, like it had in Go?

This fortuitous conversation led to my collaboration with the team at DeepMind.

A meeting with AI pioneer Demis Hassabis led to the current work on creative uses of machine learning in mathematical research. Wu Hong / EPA

Mathematicians like myself often use computers to check or perform long computations. However, computers usually cannot help me develop intuition or suggest a possible line of attack. So we asked ourselves: can deep learning help mathematicians build intuition?

With the team from DeepMind, we trained models to predict certain quantities called Kazhdan-Lusztig polynomials, which I have spent most of my mathematical life studying.

In my field we study representations, which you can think of as being like molecules in chemistry. In much the same way that molecules are made of atoms, the make up of representations is governed by Kazhdan-Lusztig polynomials.

Amazingly, the computer was able to predict these Kazhdan-Lusztig polynomials with incredible accuracy. The model seemed to be onto something, but we couldn’t tell what.

However, by “peeking under the hood” of the model, we were able to find a clue which led us to a new conjecture: that Kazhdan-Lusztig polynomials can be distilled from a much simpler object (a mathematical graph).

This conjecture suggests a way forward on a problem that has stumped mathematicians for more than 40 years. Remarkably, for me, the model was providing intuition!

Read more: How explainable artificial intelligence can help humans innovate[5]

In parallel work with DeepMind, mathematicians Andras Juhasz and Marc Lackenby at the University of Oxford used similar techniques to discover a new theorem in the mathematical field of knot theory. The theorem gives a relation between traits (or “invariants”) of knots that arise from different areas of the mathematical universe.

Our paper reminds us that intelligence is not a single variable, like the result of an IQ test. Intelligence is best thought of as having many dimensions.

My hope is that AI can provide another dimension, deepening our understanding of the mathematical world, as well as the world in which we live.

Read more https://theconversation.com/mathematical-discoveries-take-intuition-and-creativity-and-now-a-little-help-from-ai-172900

The Times Features

Amazon Australia and DoorDash announce two-year DashPass offer only for Prime members

New and existing Prime members in Australia can enjoy a two-year membership to DashPass for free, and gain access to AU$0 delivery fees on eligible DoorDash orders New offer co...

6 things to do if your child’s weight is beyond the ideal range – and 1 thing to avoid

One of the more significant challenges we face as parents is making sure our kids are growing at a healthy rate. To manage this, we take them for regular check-ups with our GP...

Joykids Australia Presents the Joykids Family Rave: A Weekend Adventure Like No Other

Get ready to kick off the first day of summer and the festive season with an unforgettable family adventure! Joykids Australia is excited to announce the Joykids Family Rave—an...

New study suggests weight loss drugs like Ozempic could help with knee pain. Here’s why there may be a link

The drug semaglutide, commonly known by the brand names Ozempic or Wegovy, was originally developed[1] to help people with type 2 diabetes manage their blood sugar levels. How...

Maintaining Your Pool After a Marble Interior Upgrade

After upgrading your pool with a marble interior, it’s crucial to understand that maintenance is key to preserving its elegance and longevity. You’ll want to regularly skim for d...

Labor using explanatory document to hide true powers of Misinformation Bill

The opinions and commentary of individuals could be deemed misinformation under Labor’s proposed legislation changes, according to James McComish of Victorian Bar. Appearing in...

Times Magazine

The benefits of multilingual data management (2023)

Organizations and businesses that produce a lot of data in different languages need to manage their data effectively for record purposes. Multilingual Data Management refers to the process of creating and storing data in different languages. Bel...

6 Reasons Why Perfume Gift Sets Make an Ideal Present

Perfume gift sets are the perfect way to show someone you care. Whether you're looking for a special treat for a loved one or want to give yourself a luxurious gift, perfume gift sets are a great choice. They come with a variety of different scents...

Your Own Batmobile in the City: Is it Possible?

What do bats and submarines have in common? The smart answer is that they both use sound to get to where they are going. It is more interesting, however, to note why. Bats and submarines both have to deal with dark surroundings with limited visio...

The perfect picture: what makes dream Sydney wedding photography?

The photo album is, without a shadow of a doubt, the most important memento from any loving couple’s special day! It’s the keepsake that keeps on giving, the souvenir to saviour, and the perfect reminder of what was one of the biggest - and most jo...

The Top 5 Differences Between Wall Stickers And Wallpapers

Your living room wall is the first thing guests see when they visit your home. It should be welcoming, stylish, and above all, reflect your personality.  But with so many choices on the market, it can take time to decide how to achieve the perfect...

Best Practices for Creating a High-Performance SaaS Product

Achieving high performance in designing a Software as a Service (SaaS) product must be done strategically by putting user experience, scalability, consistency, and data-driven decision-making at the forefront. In today's competitive world, where us...