The Times Australia
Fisher and Paykel Appliances
News From Asia

.

HKU Astrophysicists Collaborates with NASA’s IXPE Telescope Untangles Theories Surrounding Historic Supernova Remnant

HONG KONG SAR - Media OutReach - 14 November 2023 - A team of international scientists, including Drs Stephen NG and Yi-Jung YANG from the Department of Physics at The University of Hong Kong (HKU), collaborated with NASA on research led by Nanjing University, utilising NASA's IXPE (Imaging X-ray Polarimetry Explorer) telescope to capture the first polarised X-ray imagery of the supernova remnant SN 1006.

The new results expand scientists' understanding of the relationship between magnetic fields and the flow of high-energy particles from exploding stars. The discovery has been published in esteemed Scientific Journal The Astrophysical Journal.

The figure shows a composite image of supernova remnant SN 1006. The upper left circle shows the IXPE observed area. The IXPE 2—4 keV emission is shown with the purple colour, with magnetic field orientation denoted with white lines. The red and white represent the soft and hard X-ray emission, respectively, taken with the Chandra X-ray observatory. The golden colour denotes the Spitzer infrared emission. Image Credits: X-ray: Chandra: NASA/CXC/SAO, IXPE: NASA/MSFC/P. Zhou et al.; Infrared: Spitzer.
The figure shows a composite image of supernova remnant SN 1006. The upper left circle shows the IXPE observed area. The IXPE 2—4 keV emission is shown with the purple colour, with magnetic field orientation denoted with white lines. The red and white represent the soft and hard X-ray emission, respectively, taken with the Chandra X-ray observatory. The golden colour denotes the Spitzer infrared emission. Image Credits: X-ray: Chandra: NASA/CXC/SAO, IXPE: NASA/MSFC/P. Zhou et al.; Infrared: Spitzer.

'Magnetic fields are extremely difficult to measure, but IXPE provides an efficient way for us to probe them,' said Dr Ping ZHOU, an astrophysicist at Nanjing University in Jiangsu, China, and lead author of the new paper on the findings. 'Now we can see that SN 1006's magnetic fields are turbulent but also present an organised direction.'

Situated some 6,500 light-years from Earth in the Lupus constellation, SN 1006 is all that remains after a titanic explosion, which occurred either when two white dwarfs merged or when a white dwarf pulled too much mass from a companion star. Initially spotted in the spring of 1006 CE by observers across China, Japan, Europe, and the Arab world, its light was visible to the naked eye for at least three years. Modern astronomers still consider it the brightest stellar event in recorded history.

Since modern observation began, researchers have identified the remnant's strange double structure, markedly different from other rounded supernova remnants. It also has bright "limbs" or edges identifiable in the X-ray and gamma-ray bands.

'IXPE is a unique instrument. It can detect polarised X-rays, directly probing magnetic field structures in regions very close to the shock front, where high-energy particles are freshly accelerated. Such information is not available from any other telescopes,' said Dr Stephen NG, a high-energy astrophysicist at the Department of Physics at HKU.

'Close-proximity, X-ray-bright supernova remnants such as SN 1006 are ideally suited to IXPE measurements, given IXPE's combination of X-ray polarisation sensitivity with the capability to resolve the emission regions spatially,' said Dr Douglas SWARTZ, a researcher based at NASA's Marshall Space Flight Center in Huntsville, Alabama, through the Universities Space Research Association. 'This integrated capability is essential to localising cosmic-ray acceleration sites.'

Previous X-ray observations of SN 1006 offered the first evidence that supernova remnants can radically accelerate electrons and helped identify rapidly expanding nebulae around exploded stars as a birthplace for highly energetic cosmic rays, which can travel at nearly the speed of light. Scientists surmised that SN 1006's unique structure is tied to the orientation of its magnetic field and theorised that supernova blast waves in the northeast and southwest move in the direction aligned with the magnetic field and more efficiently accelerate high-energy particles.

'IXPE's new findings helped validate and clarify those theories,' said Dr Yi-Jung YANG, co-author of the paper and a high-energy astrophysicist at the Department of Physics of HKU, as well as a member of HKU Laboratory for Space Research. 'The polarisation properties obtained from our spectral-polarimetric analysis align remarkably well with outcomes from other methods and X-ray observatories, underscoring IXPE's reliability and strong capabilities,' Yang said. 'For the first time, we can map the magnetic field structures of supernova remnants at higher energies with enhanced detail and accuracy – enabling us to better understand the processes driving the acceleration of these particles.'

Researchers say the results demonstrate a connection between the magnetic fields and the remnant's high-energy particle outflow. The magnetic fields in SN 1006's shell are somewhat disorganised, per IXPE's findings, yet still have a preferred orientation. As the shock wave from the original explosion goes through the surrounding gas, the magnetic fields become aligned with the shock wave's motion. Charged particles are trapped by the magnetic fields around the original point of the supernova blast, where they quickly receive bursts of acceleration. Those speeding high-energy particles, in turn, transfer energy to keep the magnetic fields strong and turbulent.

IXPE has observed three supernova remnants – Cassiopeia A, Tycho and now SN 1006 – since launching in December 2021, helping scientists develop a more comprehensive understanding of the origin and processes of the magnetic fields surrounding these phenomena.

Scientists were surprised to find that SN 1006 is more polarised than the other two supernova remnants but that all three show magnetic fields oriented such that they are pointing outward from the centre of the explosion. As researchers continue to explore IXPE data, they are re-orienting their understanding of how particles get accelerated in extreme objects like these.

IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. IXPE is led by NASA's Marshall Space Flight Center in Huntsville, Alabama. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado's Laboratory for Atmospheric and Space Physics in Boulder.

This news release was adapted from the original version from NASA.
The research paper can be accessed at the following link:
https://iopscience.iop.org/article/10.3847/1538-4357/acf3e6

Image and caption for download: https://www.scifac.hku.hk/press

Hashtag: #HKU

The issuer is solely responsible for the content of this announcement.

Times Magazine

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

The Times Features

Here’s what new debt-to-income home loan caps mean for banks and borrowers

For the first time ever, the Australian banking regulator has announced it will impose new debt-...

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...

Aiper Scuba X1 Robotic Pool Cleaner Review: Powerful Cleaning, Smart Design

If you’re anything like me, the dream is a pool that always looks swimmable without you having to ha...

YepAI Emerges as AI Dark Horse, Launches V3 SuperAgent to Revolutionize E-commerce

November 24, 2025 – YepAI today announced the launch of its V3 SuperAgent, an enhanced AI platf...

What SMEs Should Look For When Choosing a Shared Office in 2026

Small and medium-sized enterprises remain the backbone of Australia’s economy. As of mid-2024, sma...

Anthony Albanese Probably Won’t Lead Labor Into the Next Federal Election — So Who Will?

As Australia edges closer to the next federal election, a quiet but unmistakable shift is rippli...

Top doctors tip into AI medtech capital raise a second time as Aussie start up expands globally

Medow Health AI, an Australian start up developing AI native tools for specialist doctors to  auto...