The Times Australia
The Times World News

.
Times Media

.

Machine learning plus insights from genetic research shows the workings of cells – and may help develop new drugs for COVID-19 and other diseases

  • Written by Shang Gao, Doctoral student in Bioinformatics, University of Illinois at Chicago

The Research Brief[1] is a short take about interesting academic work.

The big idea

We combined a machine learning algorithm with knowledge gleaned from hundreds of biological experiments to develop a technique[2] that allows biomedical researchers to figure out the functions of the proteins that turn genes on and off in cells, called transcription factors. This knowledge could make it easier to develop drugs for a wide range of diseases.

Early on during the COVID-19 pandemic, scientists who worked out the genetic code of the RNA molecules of cells in the lungs and intestines[3] found that only a small group of cells in these organs were most vulnerable to being infected by the SARS-CoV-2 virus. That allowed researchers to focus on blocking the virus’s ability to enter these cells. Our technique could make it easier for researchers to find this kind of information.

The biological knowledge we work with comes from this kind of RNA sequencing, which gives researchers a snapshot of the hundreds of thousands of RNA molecules in a cell as they are being translated into proteins. A widely praised machine learning tool, the Seurat analysis platform[4], has helped researchers all across the world discover new cell populations in healthy and diseased organs. This machine learning tool processes data from single-cell RNA sequencing without any information ahead of time about how these genes function and relate to each other.

Our technique takes a different approach by adding knowledge about certain genes and cell types to find clues about the distinct roles of cells. There has been more than a decade of research identifying all the potential targets of transcription factors.

Armed with this knowledge, we used a mathematical approach called Bayesian inference[5]. In this technique, prior knowledge is converted into probabilities that can be calculated on a computer. In our case it’s the probability of a gene being regulated by a given transcription factor. We then used a machine learning algorithm to figure out the function of the transcription factors in each one of the thousands of cells we analyzed.

We published our technique[6], called Bayesian Inference Transcription Factor Activity Model, in the journal Genome Research and also made the software freely available[7] so that other researchers can test and use it.

Why it matters

Our approach works across a broad range of cell types and organs and could be used to develop treatments for diseases like COVID-19 or Alzheimer’s. Drugs for these difficult-to-treat diseases work best if they target cells that cause the disease and avoid collateral damage to other cells. Our technique makes it easier for researchers to home in on these targets.

A blob is covered with tiny spheres A human cell (greenish blob) is heavily infected with SARS-CoV-2 (orange dots), the virus that causes COVID-19, in this colorized microscope image. National Institute of Allergy and Infectious Diseases[8]

What other research is being done

Single-cell RNA-sequencing has revealed how each organ can have 10, 20 or even more subtypes of specialized cells, each with distinct functions. A very exciting new development is the emergence of spatial transcriptomics, in which RNA sequencing is performed in a spatial grid that allows researchers to study the RNA of cells at specific locations in an organ.

A recent paper[9] used a Bayesian statistics approach similar to ours to figure out distinct roles of cells while taking into account their proximity to one another. Another research group combined spatial data with single-cell RNA-sequencing data[10] and studied the distinct functions of neighboring cells.

What’s next

We plan to work with colleagues to use our new technique to study complex diseases such as Alzheimer’s disease and COVID-19, work that could lead to new drugs for these diseases. We also want to work with colleagues to better understand the complexity of interactions among cells.

[Understand new developments in science, health and technology, each week. Subscribe to The Conversation’s science newsletter[11].]

Read more https://theconversation.com/machine-learning-plus-insights-from-genetic-research-shows-the-workings-of-cells-and-may-help-develop-new-drugs-for-covid-19-and-other-diseases-164992

The Times Features

HCF’s Healthy Hearts Roadshow Wraps Up 2024 with a Final Regional Sprint

Next week marks the final leg of the HCF Healthy Hearts Roadshow for 2024, bringing free heart health checks to some of NSW’s most vibrant regional communities. As Australia’s ...

The Budget-Friendly Traveler: How Off-Airport Car Hire Can Save You Money

When planning a trip, transportation is one of the most crucial considerations. For many, the go-to option is renting a car at the airport for convenience. But what if we told ...

Air is an overlooked source of nutrients – evidence shows we can inhale some vitamins

You know that feeling you get when you take a breath of fresh air in nature? There may be more to it than a simple lack of pollution. When we think of nutrients, we think of t...

FedEx Australia Announces Christmas Shipping Cut-Off Dates To Help Beat the Holiday Rush

With Christmas just around the corner, FedEx is advising Australian shoppers to get their presents sorted early to ensure they arrive on time for the big day. FedEx has reveale...

Will the Wage Price Index growth ease financial pressure for households?

The Wage Price Index’s quarterly increase of 0.8% has been met with mixed reactions. While Australian wages continue to increase, it was the smallest increase in two and a half...

Back-to-School Worries? 70% of Parents Fear Their Kids Aren’t Ready for Day On

Australian parents find themselves confronting a key decision: should they hold back their child on the age border for another year before starting school? Recent research from...

Times Magazine

BLUETTI EB3A Portable Power Station review

At work and on assignment The crew at TheTimes.com.au were offered the opportunity to carry out a long term test of a BLUETTI power station. When the EB3A power station arrived by courier, we unpacked it with enthusiasm and some curiosity as none o...

Tips on Safer Surfboard Storage

When you’ve invested money to buy the best softboards in Sydney, you want to do everything you can to keep that investment safe and secure, right? A big part of doing that is knowing all the best practices when it comes to safe and proper storage f...

Harnessing Success with Vistaprint: A Strategic Alliance for Australian Businesses

In the vibrant marketplace of today, businesses are consistently on the lookout for innovative methods to amplify their brand presence. A pioneering brand assisting in this endeavour is Vistaprint, an international e-commerce titan offering an im...

Vehicle Emissions Star Rating using public data to inform consumer purchasing decisions

Global open data company Link Digital has used open source technology to develop a new Vehicle Emissions  Star Rating (VESR) website for the New South Wales Government to help drivers consider the efficiency and  environmental impact of their nex...

What Are the Features of Employee Scheduling Software: Key Tools for Workforce Management

Employee scheduling software has become an essential tool for modern businesses. These solutions are designed to streamline the scheduling process, ensuring that managers can efficiently allocate shifts and resources. Features such as automated sched...

Unlocking Your Business Potential with The Power of Custom Software Development Services

Businesses are constantly looking for new and inventive ways of gaining an advantage by using the latest innovations in technology. Engaging with custom software development service providers is one of the best approaches to accomplishing this. O...