The Times Australia
The Times World News

.

Machine learning plus insights from genetic research shows the workings of cells – and may help develop new drugs for COVID-19 and other diseases

  • Written by Shang Gao, Doctoral student in Bioinformatics, University of Illinois at Chicago

The Research Brief[1] is a short take about interesting academic work.

The big idea

We combined a machine learning algorithm with knowledge gleaned from hundreds of biological experiments to develop a technique[2] that allows biomedical researchers to figure out the functions of the proteins that turn genes on and off in cells, called transcription factors. This knowledge could make it easier to develop drugs for a wide range of diseases.

Early on during the COVID-19 pandemic, scientists who worked out the genetic code of the RNA molecules of cells in the lungs and intestines[3] found that only a small group of cells in these organs were most vulnerable to being infected by the SARS-CoV-2 virus. That allowed researchers to focus on blocking the virus’s ability to enter these cells. Our technique could make it easier for researchers to find this kind of information.

The biological knowledge we work with comes from this kind of RNA sequencing, which gives researchers a snapshot of the hundreds of thousands of RNA molecules in a cell as they are being translated into proteins. A widely praised machine learning tool, the Seurat analysis platform[4], has helped researchers all across the world discover new cell populations in healthy and diseased organs. This machine learning tool processes data from single-cell RNA sequencing without any information ahead of time about how these genes function and relate to each other.

Our technique takes a different approach by adding knowledge about certain genes and cell types to find clues about the distinct roles of cells. There has been more than a decade of research identifying all the potential targets of transcription factors.

Armed with this knowledge, we used a mathematical approach called Bayesian inference[5]. In this technique, prior knowledge is converted into probabilities that can be calculated on a computer. In our case it’s the probability of a gene being regulated by a given transcription factor. We then used a machine learning algorithm to figure out the function of the transcription factors in each one of the thousands of cells we analyzed.

We published our technique[6], called Bayesian Inference Transcription Factor Activity Model, in the journal Genome Research and also made the software freely available[7] so that other researchers can test and use it.

Why it matters

Our approach works across a broad range of cell types and organs and could be used to develop treatments for diseases like COVID-19 or Alzheimer’s. Drugs for these difficult-to-treat diseases work best if they target cells that cause the disease and avoid collateral damage to other cells. Our technique makes it easier for researchers to home in on these targets.

A blob is covered with tiny spheres A human cell (greenish blob) is heavily infected with SARS-CoV-2 (orange dots), the virus that causes COVID-19, in this colorized microscope image. National Institute of Allergy and Infectious Diseases[8]

What other research is being done

Single-cell RNA-sequencing has revealed how each organ can have 10, 20 or even more subtypes of specialized cells, each with distinct functions. A very exciting new development is the emergence of spatial transcriptomics, in which RNA sequencing is performed in a spatial grid that allows researchers to study the RNA of cells at specific locations in an organ.

A recent paper[9] used a Bayesian statistics approach similar to ours to figure out distinct roles of cells while taking into account their proximity to one another. Another research group combined spatial data with single-cell RNA-sequencing data[10] and studied the distinct functions of neighboring cells.

What’s next

We plan to work with colleagues to use our new technique to study complex diseases such as Alzheimer’s disease and COVID-19, work that could lead to new drugs for these diseases. We also want to work with colleagues to better understand the complexity of interactions among cells.

[Understand new developments in science, health and technology, each week. Subscribe to The Conversation’s science newsletter[11].]

Read more https://theconversation.com/machine-learning-plus-insights-from-genetic-research-shows-the-workings-of-cells-and-may-help-develop-new-drugs-for-covid-19-and-other-diseases-164992

Times Magazine

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an online presence that reflects your brand, engages your audience, and drives results. For local businesses in the Blue Mountains, a well-designed website a...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

The Times Features

NSW has a new fashion sector strategy – but a sustainable industry needs a federally legislated response

The New South Wales government recently announced the launch of the NSW Fashion Sector Strategy, 2025–28[1]. The strategy, developed in partnership with the Australian Fashion ...

From Garden to Gift: Why Roses Make the Perfect Present

Think back to the last time you gave or received flowers. Chances are, roses were part of the bunch, or maybe they were the whole bunch.   Roses tend to leave an impression. Even ...

Do I have insomnia? 5 reasons why you might not

Even a single night of sleep trouble can feel distressing and lonely. You toss and turn, stare at the ceiling, and wonder how you’ll cope tomorrow. No wonder many people star...

Wedding Photography Trends You Need to Know (Before You Regret Your Album)

Your wedding album should be a timeless keepsake, not something you cringe at years later. Trends may come and go, but choosing the right wedding photography approach ensures your ...

Can you say no to your doctor using an AI scribe?

Doctors’ offices were once private. But increasingly, artificial intelligence (AI) scribes (also known as digital scribes) are listening in. These tools can record and trans...

There’s a new vaccine for pneumococcal disease in Australia. Here’s what to know

The Australian government announced last week there’s a new vaccine[1] for pneumococcal disease on the National Immunisation Program for all children. This vaccine replaces pr...