The Times Australia
Google AI
The Times World News

.

The North American heatwave shows we need to know how climate change will change our weather

  • Written by Christian Jakob, Professor in Atmospheric Science, Monash University

Eight days ago, it rained over the western Pacific Ocean near Japan. There was nothing especially remarkable about this rain event, yet it made big waves twice.

First, it disturbed the atmosphere in just the right way to set off an undulation in the jet stream - a river of very strong winds in the upper atmosphere - that atmospheric scientists call a Rossby wave (or a planetary wave). Then the wave was guided eastwards by the jet stream towards North America.

Along the way the wave amplified, until it broke just like an ocean wave does when it approaches the shore. When the wave broke it created a region of high pressure that has remained stationary over the North American northwest for the past week.

This is where our innocuous rain event made waves again: the locked region of high pressure air set off one of the most extraordinary heatwaves we have ever seen, smashing temperature records in the Pacific Northwest of the United States and in Western Canada as far north as the Arctic. Lytton in British Columbia hit 49.6℃ this week before suffering a devastating wildfire[1].

What makes a heatwave?

While this heatwave has been extraordinary in many ways, its birth and evolution followed a well-known sequence of events that generate heatwaves.

Heatwaves occur when there is high air pressure at ground level. The high pressure is a result of air sinking through the atmosphere. As the air descends, the pressure increases, compressing the air and heating it up, just like in a bike pump.

Sinking air has a big warming effect: the temperature increases by 1 degree for every 100 metres the air is pushed downwards.

The North American heatwave shows we need to know how climate change will change our weather The North American heatwave has seen fires spread across the landscape. NASA

High-pressure systems are an intrinsic part of an atmospheric Rossby wave, and they travel along with the wave. Heatwaves occur when the high-pressure systems stop moving and affect a particular region for a considerable time.

When this happens, the warming of the air by sinking alone can be further intensified by the ground heating the air – which is especially powerful if the ground was already dry. In the northwestern US and western Canada, heatwaves are compounded by the warming produced by air sinking after it crosses the Rocky Mountains.

How Rossby waves drive weather

This leaves two questions: what makes a high-pressure system, and why does it stop moving?

As we mentioned above, a high-pressure system is usually part of a specific type of wave in the atmosphere – a Rossby wave. These waves are very common, and they form when air is displaced north or south by mountains, other weather systems or large areas of rain.

Read more: We've learned a lot about heatwaves, but we're still just warming up[2]

Rossby waves are the main drivers of weather outside the tropics, including the changeable weather in the southern half of Australia. Occasionally, the waves grow so large that they overturn on themselves and break. The breaking of the waves is intimately involved in making them stationary.

Importantly, just as for the recent event, the seeds for the Rossby waves that trigger heatwaves are located several thousands of kilometres to the west of their location. So for northwestern America, that’s the western Pacific. Australian heatwaves are typically triggered by events in the Atlantic to the west of Africa.

Another important feature of heatwaves is that they are often accompanied by high rainfall closer to the Equator. When southeast Australia experiences heatwaves, northern Australia often experiences rain. These rain events are not just side effects, but they actively enhance and prolong heatwaves.

What will climate change mean for heatwaves?

Understanding the mechanics of what causes heatwaves is very important if we want to know how they might change as the planet gets hotter.

We know increased carbon dioxide in the atmosphere is increasing Earth’s average surface temperature. However, while this average warming is the background for heatwaves, the extremely high temperatures are produced by the movements of the atmosphere we talked about earlier.

So to know how heatwaves will change as our planet warms, we need to know how the changing climate affects the weather events that produce them. This is a much more difficult question than knowing the change in global average temperature.

How will events that seed Rossby waves change? How will the jet streams change? Will more waves get big enough to break? Will high-pressure systems stay in one place for longer? Will the associated rainfall become more intense, and how might that affect the heatwaves themselves?

Read more: Explainer: climate modelling[3]

Our answers to these questions are so far somewhat rudimentary. This is largely because some of the key processes involved are too detailed to be explicitly included in current large-scale climate models.

Climate models agree that global warming will change the position and strength of the jet streams. However, the models disagree about what will happen to Rossby waves.

From climate change to weather change

There is one thing we do know for sure: we need to up our game in understanding how the weather is changing as our planet warms, because weather is what has the biggest impact on humans and natural systems.

To do this, we will need to build computer models of the world’s climate that explicitly include some of the fine detail of weather. (By fine detail, we mean anything about a kilometre in size.) This in turn will require investment in huge amounts of computing power for tools such as our national climate model, the Australian Community Climate and Earth System Simulator[4] (ACCESS), and the computing and modelling infrastructure projects of the National Collaborative Research Infrastructure Strategy (NCRIS) that support it.

We will also need to break down the artificial boundaries between weather and climate which exist in our research, our education and our public conversation.

Read more https://theconversation.com/the-north-american-heatwave-shows-we-need-to-know-how-climate-change-will-change-our-weather-163802

Times Magazine

With Nvidia’s second-best AI chips headed for China, the US shifts priorities from security to trade

This week, US President Donald Trump approved previously banned exports[1] of Nvidia’s powerful ...

Navman MiVue™ True 4K PRO Surround honest review

If you drive a car, you should have a dashcam. Need convincing? All I ask that you do is search fo...

Australia’s supercomputers are falling behind – and it’s hurting our ability to adapt to climate change

As Earth continues to warm, Australia faces some important decisions. For example, where shou...

Australia’s electric vehicle surge — EVs and hybrids hit record levels

Australians are increasingly embracing electric and hybrid cars, with 2025 shaping up as the str...

Tim Ayres on the AI rollout’s looming ‘bumps and glitches’

The federal government released its National AI Strategy[1] this week, confirming it has dropped...

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

The Times Features

I’m heading overseas. Do I really need travel vaccines?

Australia is in its busiest month[1] for short-term overseas travel. And there are so many thi...

Mint Payments partners with Zip Co to add flexible payment options for travel merchants

Mint Payments, Australia's leading travel payments specialist, today announced a partnership with ...

When Holiday Small Talk Hurts Inclusion at Work

Dr. Tatiana Andreeva, Associate Professor in Management and Organisational Behaviour, Maynooth U...

Human Rights Day: The Right to Shelter Isn’t Optional

It is World Human Rights Day this week. Across Australia, politicians read declarations and clai...

In awkward timing, government ends energy rebate as it defends Wells’ spendathon

There are two glaring lessons for politicians from the Anika Wells’ entitlements affair. First...

Australia’s Coffee Culture Faces an Afternoon Rethink as New Research Reveals a Surprising Blind Spot

Australia’s celebrated coffee culture may be world‑class in the morning, but new research* sugge...

Reflections invests almost $1 million in Tumut River park to boost regional tourism

Reflections Holidays, the largest adventure holiday park group in New South Wales, has launched ...

Groundbreaking Trial: Fish Oil Slashes Heart Complications in Dialysis Patients

A significant development for patients undergoing dialysis for kidney failure—a group with an except...

Worried after sunscreen recalls? Here’s how to choose a safe one

Most of us know sunscreen is a key way[1] to protect areas of our skin not easily covered by c...