The Times Australia
The Times World News

.
The Times Real Estate

.

How the weird and wonderful microbes in wastewater can make our cities more sustainable

  • Written by Christian Krohn, Postoctoral Researcher, School of Science, RMIT University
How the weird and wonderful microbes in wastewater can make our cities more sustainable

COVID-19 showed us how useful monitoring wastewater[1] can be. But the genetic material in our wastewater, namely DNA and RNA, is a treasure trove of other useful information. It reveals the presence of thousands of different types of weird and wonderful wastewater microbes.

The diversity of these microbes can “talk” to us and tell us how to get more renewable energy out of our wastes. If only we could listen to them. Soon we can.

How will that work? It all starts with our poo. These types of microbes have been used since the 19th century[2] to treat and reduce the ever-increasing volumes of sewage sludge arriving at our wastewater treatment plants, especially in urban areas. Two-thirds of the world’s people[3] are expected to live in urban areas by 2050, hence sewage treatment will be in high demand[4].

Yet most people today have little idea how vital microbes are for sustainable growth of cities. We need them to treat our waste.

We also need sources of renewable energy. Thanks to naturally occurring microbes, our water utilities can produce renewable biogas from human waste. By reducing our reliance on fossil fuels, their poo biogas[5] can help to mitigate climate change.

So we need to learn more about these microbes to ensure they are doing the best possible job of processing our waste. One way of doing that is by monitoring DNA in human waste sludge.

A living sludge mass

First of all, this promising waste-to-energy technology, which fully relies on microbes, is called anaerobic digestion[6].

Operating anaerobic digesters is expensive. It requires intense monitoring strategies and frequent interventions. That is because microbes can be unpredictable.

On the face of it, the process is really simple. Wastewater sludge is pumped into large vessels without oxygen, where microbes are left alone for a few days to practically eat the sludge and breathe out biogas. Sludge goes in, treated sludge plus gas goes out.

The process reduces overall sludge mass and the number of pathogens. This ultimately makes it a safer material, while also generating renewable energy. Brilliant, right?

Using anaerobic digesters to treat human waste has multiple benefits, but depends on keeping a community of microbes healthy.

But there is a catch. This process is only effective if these living, breathing treatment vessels behave. Unfortunately, sometimes they get out of control without warning, making them difficult to manage.

These sludge microbes are similar to those in our gut. Once we know this, we might intuitively understand how sensitive they can be, given our experience of gastrointestinal disorders linked to our gut microbes[7].

So microbial happiness is not only important for our own health, it is crucial for the health of the large digester vessels managed by wastewater treatment plants. To make it cheaper to run these facilities, we urgently need to learn more about life in our sludge.

Sludge pours into a large open tank at a waste treatment plant
The huge amounts of human waste we create support an extraordinarily rich variety of microbial life. Geermy/Shutterstock[8]

DNA, a window on an invisible world

At the ARC Biosolids Training Centre[9] we want to make anaerobic digestion easier for water utilities by developing routine DNA-based monitoring tools. Essentially, we are looking for a way to predict the process to manage it better.

DNA tells the story of thousands of different types of microbes that work together to treat our sludge. To optimise the wastewater treatment process we need to identify them, the troublemakers and the do-gooders.

But sludge life is complex. Before it can tell us its story, we require empirical studies. We have to be able to relate microbial DNA to the process.

To show how that works we produced a review[10] of the role of microbes for monitoring anaerobic digestion. This includes some of the diversity metrics that ecologists use to assess the health of the whole system based on the composition of microbes.

Compound microscope images of microbes in waste sludge
Compound microscope images of just a few of the thousands of different types of microbes in wastewater sludge. Helen Stratton and Melody Christie, Stratton Microbial Ecology Lab at Griffith University

The weird and the wonderful

The microbes that are used to treat sludge consist of a diverse range of ancient, weird, at times alien-like bacteria and archaea[11] (another form of single-celled organisms). They can metabolise materials that no other lifeform can.

Amazingly, some of them existed 3.5 billion years ago[12] – the Earth formed 4.5 billion years ago. There is even a chance some have existed on Mars[13].

And sludge life is a very active community of microbes: some are bullies, some collaborators. Through their DNA, we count them to learn how many different types of microbes there are and how often they appear. This counted diversity can then tell us if a system is healthy or not.

For a healthy, productive system, we need diversity[14] – as many different microbes as possible – to provide stability. If a particular organism somehow starts to grow faster or slower, it means something is getting out of control.

We can exploit that knowledge to develop risk scores for the operators of treatment facilities. And that is what we try to do.

We will keep working so that someday we can properly listen to our sludge-eating microbes and get more value out of our poo.

References

  1. ^ monitoring wastewater (theconversation.com)
  2. ^ since the 19th century (extension.psu.edu)
  3. ^ Two-thirds of the world’s people (unhabitat.org)
  4. ^ will be in high demand (www.nature.com)
  5. ^ poo biogas (www.iea.org)
  6. ^ anaerobic digestion (www.epa.gov)
  7. ^ gastrointestinal disorders linked to our gut microbes (www.bmj.com)
  8. ^ Geermy/Shutterstock (www.shutterstock.com)
  9. ^ ARC Biosolids Training Centre (www.transformingbiosolids.org.au)
  10. ^ review (www.frontiersin.org)
  11. ^ archaea (www.britannica.com)
  12. ^ existed 3.5 billion years ago (news.mit.edu)
  13. ^ a chance some have existed on Mars (www.nature.com)
  14. ^ we need diversity (theconversation.com)

Read more https://theconversation.com/how-the-weird-and-wonderful-microbes-in-wastewater-can-make-our-cities-more-sustainable-220850

The Times Features

The Power of Community: How Support Services Improve Lives for People with Disabilities

(Source) Community extends beyond geographic boundaries because it creates a sense of belonging, where individuals become both visible and heard through supportive networks. A sui...

Aluminium vs. Steel Ladders: Which One is Best for Your Needs?

(Source) Every homeowner who reaches the attic for cobwebs alongside professional tradespeople finds reliable ladders essential for their work. A comparison between aluminium ladd...

A Parent’s Guide to Choosing the Best Children's Dentist in Bendigo

(Source) Selecting the correct dentist for child dental care seems complicated because you want someone who delivers excellent medical care while handling children effectively. Be...

5 Reasons Your Finances Deserve a Summer Refresh

Most of you are ready to change your clothing, tidy the lawn, and schedule a well-earned vacation as the days become longer and the temps climb. Summer, meanwhile, is also the id...

Optimal Locations for Smoke Alarms in Australian Homes

Smoke alarms play a crucial role in ensuring the safety of homes across Australia. They are essential in alerting occupants at the earliest signs of a fire, allowing enough time ...

10 Smart Ways Australians Can Slash Their Electricity Bills in 2025

Electricity prices in Australia continue to rise, but that does not mean you have to sacrifice your lifestyle to save money. By making a few smart changes, you can lower your pow...

Times Magazine

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

LayBy Shopping