The Times Australia
The Times World News

.

It sounds like science fiction. But we can now sample water to find the DNA of every species living there

  • Written by Maarten De Brauwer, Research fellow, CSIRO
It sounds like science fiction. But we can now sample water to find the DNA of every species living there

Figuring out what species live in an ecosystem, and which ones are rare or just good at hiding is an essential way to understand and care for them. Until now, it’s been very labour intensive.

But now we can do it differently. Take a sample from the ocean and match tiny traces of DNA in the water with the species living there.

It’s not science fiction – it’s environmental DNA sampling. This approach opens the door to rapid, broad detection of species. You can find if pest species have arrived, tell if a hard-to-find endangered species is still hanging on, and gauge ecosystem health.

Because eDNA testing is still new, there are questions about its strengths and weaknesses and how it can best be used. For instance, we can tell if extremely rare freshwater sawfish[1] are present in a Northern Territory river – but not how many individual fish there are.

Today CSIRO released a roadmap[2] created through consultation with many experts to show how eDNA technologies can be best integrated into marine monitoring at a large scale – and what the future holds.

man collecting DNA samples in buckets of river water
Here, lead author Maarten De Brauwer collects jerry cans of water from Tasmania’s Derwent River to document hundreds of species in the estuary. Bruce Deagle, CC BY-ND[3]

How does eDNA sampling work?

Deoxyribonucleic acid (DNA) is a very special molecule. It acts as the code for all life on Earth, holding the cellular instructions to make everything from a beetle to a human. Because DNA is unique to each species, it’s like a product barcode in a supermarket.

As animals and plants live their lives, they shed fragments of their DNA into their environment through dead skin, hair, saliva, scat, leaves or pollen. These traces make up environmental DNA. There’s enough DNA in water and even air to tell species apart.

The real power of eDNA sampling is how broad a net it casts. With one sample, we can detect anything living, from bacteria to whales, and in potentially every environment with life, from the deep sea to underground caves.

Read more: Environmental DNA – how a tool used to detect endangered wildlife ended up helping fight the COVID-19 pandemic[4]

Importantly, this method lets scientists detect species even if we can’t see or capture them. This comes in handy when working with rare or very small species, or when working in environments such as murky water where it is impossible to see or catch them. It will, for example, make it easier to study critically endangered pipefish[5] in estuaries.

To date, much eDNA research has focused on detecting species in water, because it’s relatively easy to collect, concentrate and extract eDNA from liquids. But we now know we can produce species lists based on the eDNA in soil, scat, honey, or even the air.

Figure of mountains, seas, rivers showing how environmental DNA sampling can track species Environmental DNA sampling has a wide range of uses, from land to river to sea. Berry et al, doi.org/10.1002/edn3.173, CC BY-ND[6]

How do scientists actually measure eDNA?

Typically, you collect samples, perform molecular analysis and interpret results.

Collect samples: Scientists collect a sample from the environment. This can be water, soil, or virtually any environmental substrate which might contain eDNA. We then process the sample to concentrate and stabilise the DNA. You might collect two litres of water with a bucket, filter it and then freeze or chemically stabilise the eDNA coating the filter.

Molecular analysis: The first step in the lab is to purify DNA from a sample. The next step depends on your goal. If you want to detect a single species, you would generally use a technique called quantitative polymerase chain reaction (qPCR[7]), similar to how you test for COVID.

But to detect whole communities of species, you have to use high-throughput DNA sequencing[8]. Where detecting a single species with eDNA takes only a few days days, completing the labwork for species communities can take weeks to months. At the end, you arrive at a long list of thousands or even millions of DNA barcode sequences.

Interpreting results: Single species interpretation is simple. Was DNA from your species of interest present or not? But when the goal is to identify multiple species, scientists use DNA reference libraries[9] to link the DNA barcodes detected in the sample back to individual species.

This works well – but only if we already have the species listed in these libraries. If not, you can’t detect it with eDNA methods. That means eDNA can’t be used to detect new species or those only known from photos and videos.

Why does eDNA matter? Look at marine parks

Australia boasts one of the world’s largest and most biodiverse networks of marine parks. But as ocean life reels from climate change, overfishing and plastic pollution, it’s certain the oceans of the future will look very different to that of today.

Gauging impact to support evidence-based decisions across such a vast, diverse and remote area poses challenges difficult to solve with standard hands-on survey methods like like diving, video or trawling.

That’s where eDNA methods can help, offering a powerful, non-destructive, cost-effective and quick form of monitoring that can complement other techniques.

eDNA means we can fine-tune monitoring for specific purposes, such as detecting pests, endangered, or dangerous species.

figure showing the many future uses for eDNA with underwater drones, samplers in buoys In future, our marine parks may well have networks of buoys sampling eDNA at the surface and underwater drones sampling the depths. CSIRO, CC BY-ND[10]

This is just the start. Imagine a future where eDNA data could be collected from the most remote oceans by autonomous vehicles, analysed by the drone or on board a research vessel, and integrated with other monitoring data so marine managers and the public can see near-real time data about the condition of the ocean.

Science fiction? Not any more.

Read more: You shed DNA everywhere you go – trace samples in the water, sand and air are enough to identify who you are, raising ethical questions about privacy[11]

Read more https://theconversation.com/it-sounds-like-science-fiction-but-we-can-now-sample-water-to-find-the-dna-of-every-species-living-there-216989

Times Magazine

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

The Times Features

Is our mental health determined by where we live – or is it the other way round? New research sheds more light

Ever felt like where you live is having an impact on your mental health? Turns out, you’re not imagining things. Our new analysis[1] of eight years of data from the New Zeal...

Going Off the Beaten Path? Here's How to Power Up Without the Grid

There’s something incredibly freeing about heading off the beaten path. No traffic, no crowded campsites, no glowing screens in every direction — just you, the landscape, and the...

West HQ is bringing in a season of culinary celebration this July

Western Sydney’s leading entertainment and lifestyle precinct is bringing the fire this July and not just in the kitchen. From $29 lobster feasts and award-winning Asian banque...

What Endo Took and What It Gave Me

From pain to purpose: how one woman turned endometriosis into a movement After years of misdiagnosis, hormone chaos, and major surgery, Jo Barry was done being dismissed. What beg...

Why Parents Must Break the Silence on Money and Start Teaching Financial Skills at Home

Australia’s financial literacy rates are in decline, and our kids are paying the price. Certified Money Coach and Financial Educator Sandra McGuire, who has over 20 years’ exp...

Australia’s Grill’d Transforms Operations with Qlik

Boosting Burgers and Business Clean, connected data powers real-time insights, smarter staffing, and standout customer experiences Sydney, Australia, 14 July 2025 – Qlik®, a g...