The Times Australia
Fisher and Paykel Appliances
The Times World News

.

what else could mRNA technology do for our health?

  • Written by John Fraser, Dean, Faculty of Medical and Health Sciences, University of Auckland
what else could mRNA technology do for our health?

Many people first became familiar with the term “mRNA[1]” when Pfizer’s and Moderna’s COVID vaccines were rolled out. In the simplest terms, mRNA, which stands for messenger ribonucleic acid, is a type of genetic material that gives cells in our bodies instructions to make specific proteins.

More recently the 2023 Nobel prize in physiology or medicine was awarded to Katalin Karikó and Drew Weissman[2] from the University of Pennsylvania for their discoveries in mRNA biology.

These scientists’ work has underpinned multiple successful COVID vaccines, which undoubtedly shifted the course of the pandemic. But their discoveries have likewise opened the door to a range of possible therapeutics which, until recently, remained elusive.

Read more: Nobel prize in medicine awarded to mRNA pioneers – here's how their discovery was integral to COVID vaccine development[3]

The promise of mRNA

Within each of our cells are ribosomes[4], micro-machines that manufacture proteins, which in turn make up everything from muscle and bone to enzymes and hormones.

mRNA is the intermediate chemical “message” that carries the genetic code locked in the chromosomes of our DNA to the cytoplasm, the fluid that fills our cells and where proteins are made.

The ability to deliver genetic information directly into a cell has been one of medicine’s most obstinate challenges. While mRNA was theoretically the most attractive way to achieve this, it was of little use as a therapy. This is because our immune system mistakes the foreign RNA as being an invading virus, mounting a powerful and toxic immune response. Injecting naked mRNA[5] therefore can make you very sick.

So it was pivotal when Karakó and Weissman pioneered a technique[6] to “cloak” mRNA from the immune system, alongside lipid nanoparticles to protect the RNA and allow it to be delivered safely to our cells.

A health-care worker drawing up a vaccine.
COVID vaccines have shown us the potential of mRNA technology. Siyanight/Shutterstock[7]

This paved the way for mRNA COVID vaccines which instruct our cells to make spike proteins, proteins on the surface of SARS-CoV-2 (the virus that causes COVID). This is turn primes our immune system to make anti-spike antibodies that then block SARS-CoV-2 from infecting our cells.

Their discovery has opened up new possibilities for how we treat common infectious illnesses as well as genetic diseases that have previously defied treatment.

Flu vaccines

Influenza kills up to 650,000 people globally each year[8]. At the moment, seasonal vaccines[9] need to be made annually once the main circulating strain has been identified. Manufacture takes about six months, by which time the original flu strain may have evolved. At best the seasonal vaccine is about 60% effective[10].

We need a better vaccine and mRNA technology offers the potential of a universal influenza vaccine, with multiple candidates[11] currently undergoing human clinical trials[12]. A vaccine, if successful, could replace the current seasonal shots.

The mRNA vaccines are based on a specific part of the influenza protein, called hemagglutinin, teaching the cells to recall it and therefore inducing broad immunity across many influenza strains. In this vaccine, hemagglutinin is the equivalent target the spike protein is in the COVID vaccines.

Read more: 3 mRNA vaccines researchers are working on (that aren't COVID)[13]

Cancer treatments

Targeting cancer is another promising avenue for mRNA technology, with mRNA-based cancer immunotherapies already at the trial stage[14].

One technique uses mRNA to mimic “neoantigens” (short bits of tumour proteins on the surface of the tumour cells) identified from an individual patient’s tumour cells. Once delivered to the patient’s immune system, their body should produce powerful killer cells called cytotoxic T cells, eliciting a strong anti-tumour immune response.

A person with a bald head sitting on a bed.
mRNA technology has a number of possible applications in cancer treatment. fizkes/Shutterstock[15]

Chimeric antigen receptor T cells (CAR-T) therapy is a form of cancer immunotherapy[16] currently in use around the world to treat certain forms of leukaemia. It uses immune cells called T cells that are genetically altered in a lab to help them locate and destroy cancer cells more effectively.

Traditionally CAR-T therapy has required a patient’s T cells to be harvested from white blood cells, modified, and then injected back into the patient. With mRNA technology the time consuming and most expensive steps are could be eliminated[17] by delivering the CAR gene directly to T cells in the bloodstream.

Genetic diseases

mRNA technology is also transforming our response to some genetic diseases. Hereditary angioedema[18] is a rare and potentially fatal genetic disorder where patients suffer severe and repeated attacks of swelling in their organs and tissues.

Scientists had discovered that a specific liver gene called KLKB1 prompts these swelling attacks. Researchers developed mRNA as a system to genetically edit and in turn “silence” the offending gene, with initial results[19] positive for patients.

A similar trial using mRNA to edit the liver gene transthyretin alleviated symptoms in patients suffering a life-threatening hereditary condition called ATTR amyloidosis[20] which affects the nerves and heart.

The path ahead

Therapeutics based on mRNA technology are still in their infancy and hurdles remain. For example, mRNA is short-lived in cells and protein is only made for a short time. Increasing the life-span of mRNA in cells would reduce the amount of mRNA required (the dosage). Scientists are working on this and a couple of methods have shown promise[21].

These caveats aside, the ability to deliver genetic information directly into cells could be a new frontier for medical therapeutics.

References

  1. ^ mRNA (www.britannica.com)
  2. ^ Katalin Karikó and Drew Weissman (theconversation.com)
  3. ^ Nobel prize in medicine awarded to mRNA pioneers – here's how their discovery was integral to COVID vaccine development (theconversation.com)
  4. ^ ribosomes (www.britannica.com)
  5. ^ naked mRNA (pubmed.ncbi.nlm.nih.gov)
  6. ^ pioneered a technique (pubmed.ncbi.nlm.nih.gov)
  7. ^ Siyanight/Shutterstock (www.shutterstock.com)
  8. ^ year (www.who.int)
  9. ^ seasonal vaccines (www.cdc.gov)
  10. ^ 60% effective (www.cdc.gov)
  11. ^ multiple candidates (www.pnas.org)
  12. ^ clinical trials (www.nih.gov)
  13. ^ 3 mRNA vaccines researchers are working on (that aren't COVID) (theconversation.com)
  14. ^ trial stage (www.nature.com)
  15. ^ fizkes/Shutterstock (www.shutterstock.com)
  16. ^ cancer immunotherapy (www.cancer.gov)
  17. ^ could be eliminated (www.ornatx.com)
  18. ^ Hereditary angioedema (www.sciencedirect.com)
  19. ^ initial results (ir.intelliatx.com)
  20. ^ ATTR amyloidosis (www.nejm.org)
  21. ^ shown promise (www.nature.com)

Read more https://theconversation.com/beyond-covid-vaccines-what-else-could-mrna-technology-do-for-our-health-215142

Active Wear

Times Magazine

Myer celebrates 70 years of Christmas windows magic with the LEGO Group

To mark the 70th anniversary of the Myer Christmas Windows, Australia’s favourite department store...

Kindness Tops the List: New Survey Reveals Australia’s Defining Value

Commentary from Kath Koschel, founder of Kindness Factory.  In a time where headlines are dominat...

In 2024, the climate crisis worsened in all ways. But we can still limit warming with bold action

Climate change has been on the world’s radar for decades[1]. Predictions made by scientists at...

End-of-Life Planning: Why Talking About Death With Family Makes Funeral Planning Easier

I spend a lot of time talking about death. Not in a morbid, gloomy way—but in the same way we d...

YepAI Joins Victoria's AI Trade Mission to Singapore for Big Data & AI World Asia 2025

YepAI, a Melbourne-based leader in enterprise artificial intelligence solutions, announced today...

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an onli...

The Times Features

Myer celebrates 70 years of Christmas windows magic with the LEGO Group

To mark the 70th anniversary of the Myer Christmas Windows, Australia’s favourite department store...

Pharmac wants to trim its controversial medicines waiting list – no list at all might be better

New Zealand’s drug-buying agency Pharmac is currently consulting[1] on a change to how it mana...

NRMA Partnership Unlocks Cinema and Hotel Discounts

My NRMA Rewards, one of Australia’s largest membership and benefits programs, has announced a ne...

Restaurants to visit in St Kilda and South Yarra

Here are six highly-recommended restaurants split between the seaside suburb of St Kilda and the...

The Year of Actually Doing It

There’s something about the week between Christmas and New Year’s that makes us all pause and re...

Jetstar to start flying Sunshine Coast to Singapore Via Bali With Prices Starting At $199

The Sunshine Coast is set to make history, with Jetstar today announcing the launch of direct fl...

Why Melbourne Families Are Choosing Custom Home Builders Over Volume Builders

Across Melbourne’s growing suburbs, families are re-evaluating how they build their dream homes...

Australian Startup Business Operators Should Make Connections with Asian Enterprises — That Is Where Their Future Lies

In the rapidly shifting global economy, Australian startups are increasingly finding that their ...

How early is too early’ for Hot Cross Buns to hit supermarket and bakery shelves

Every year, Australians find themselves in the middle of the nation’s most delicious dilemmas - ...