The Times Australia
The Times World News

.
The Times Real Estate

.

Hopes fade for ‘room temperature superconductor’ LK-99, but quantum zero-resistance research continues

  • Written by Michael Fuhrer, Professor of Physics, Monash University
Hopes fade for ‘room temperature superconductor’ LK-99, but quantum zero-resistance research continues

The past few weeks have seen a huge surge of interest among scientists and the public in a material called LK-99[1] after it was claimed to be a superconductor at room temperature and ambient pressure.

LK-99 garnered attention after South Korean researchers posted two[2] papers[3] about it on arXiv, a non-peer-reviewed repository for scientific reports, on July 22. The researchers reported possible indicators of superconductivity in LK-99, including unexpectedly low electrical resistance and partial levitation in a magnetic field.

The potential discovery drew enthusiasm on social media and was widely reported in traditional[4] media too. As a physicist working on quantum phenomena in materials, I was gratified to see the interest in superconductivity, and I shared in the excitement about the report. But I also approached the results with scepticism, especially since many previous reports of room-temperature superconductivity have failed to be reproduced.

Now, after follow-up experiments by scientists around the world, it seems LK-99 is not so special after all[5]. However, while this particular avenue of research may be a dead end, the dream of a room-temperature superconductor is still very much alive.

What is a superconductor, and why are they useful?

You’re probably familiar with ordinary conductors, like metals, in which electrons can move fairly easily through the “crystal lattice” of atoms that makes up the material. This means an electric current can flow – but the electrons are jostled around a bit as they move, so they lose energy as they travel. (This jostling is called electrical resistance.)

In a superconductor, there is zero resistance and an electrical current can flow perfectly smoothly without losing any energy. Many metals become superconductors at very low temperatures.

Superconductivity occurs when the electrons slightly distort the crystal lattice of the metal in a way that makes them team up into “Cooper pairs”. These pairs of electrons then “condense” into a superfluid, a state of matter that can flow without friction.

Superconductors are very useful. They can be used to create extremely powerful electromagnets, such as those in MRI scanners, particle accelerators, fusion reactors and maglev trains.

Current superconductors work only at ultra-cold temperatures, so they require expensive refrigeration. A material that superconducts at everyday temperature and pressure could be used much more widely.

Currently, the highest superconducting temperatures at ambient pressure are around –138℃ (135 Kelvin), found in “cuprate” superconductors, a family of copper-containing compounds discovered unexpectedly in 1986. Electron pairing in the cuprates appears to involve a different mechanism than interaction with the lattice.

However, while our understanding of such exotic superconductors has improved, we still can’t yet predict with any certainty new materials which could superconduct at even higher temperature. Still, there is no reason to think this can’t be achieved. Moreover, many if not most superconducting materials are discovered serendipitously – so a claimed discovery of an unexpected room-temperature superconductor can’t be dismissed out of hand.

So what about LK-99?

LK-99 is a compound containing oxygen, phosphorus, lead and copper. Little was known about the material when the papers claiming superconductivity emerged. For example, it wasn’t even known whether it should conduct electricity at all.

The report of superconductivity at ambient conditions sparked a crash effort from researchers around the world to understand the material and reproduce the results. While it is still early days, and neither the initial report nor the follow-ups[6] have been peer-reviewed, a picture has started to emerge that the LK-99 compound described by the authors is not[7] a superconductor[8], and not even[9] a metal[10].

Read more: Viral room-temperature superconductor claims spark excitement – and skepticism[11]

So if it’s not a superconductor, why did the original researchers think it was? One study has pointed out[12] that an impurity in the initial LK-99 samples, cuprous sulfide, could explain some of what they saw.

Cuprous sulfide experiences a sudden, large change in resistance at a temperature of around 127℃ (400K). The first researchers saw this drop in resistance and attributed it to superconductivity in LK-99, but it is more likely explained by very low (not zero) resistance in the cuprous sulfide impurity.

The partial levitation of LK-99, which might have indicated a property of superconductors called “magnetic flux pinning[13]”, seems to be caused by ferromagnetism, a familiar effect that occurs in iron and many other materials.

So while nobody has proven the LK-99 samples studied in the original reports don’t superconduct, the balance of evidence right now is strongly in favour of other explanations. Most scientists studying superconductivity don’t see much reason to continue looking at LK-99.

Excitons and beyond

What’s next for superconductivity research? Well, we can cross LK-99 off the list of materials to study, but the search goes on.

In fact, there has been a lot of progress in the past few years towards creating zero resistance under ordinary conditions.

Read more: Room-temperature superconductors could revolutionize electronics – an electrical engineer explains the materials' potential[14]

Making electrons pair together is the key to superconductivity, but this is hard to do as they naturally repel each other. However, it’s possible to make an electron pair up with a “hole” in a material – a gap where an electron should be.

These electron–hole pairs are called excitons, and they can be combined with light to form a frictionless superfluid[15] at room temperature. This superfluid doesn’t carry an electrical current (because the charges of the electron and the hole cancel out), but separating the electron and hole[16] might allow supercurrents without resistance[17].

Topological insulators

An alternate route to zero resistance at room temperature has been found in so-called topological insulators[18]. These are materials that only allow electrons to move along their edges or surfaces, in some cases with no resistance.

Graphene, a material made of sheets of carbon only a single atom thick, can be turned into a topological insulator[19] in a strong magnetic field. But the required magnetic field is so extreme it can only be realised in a few laboratories in the world.

A photo shows a scientist manipulating a levitating piece of metal surrounding by vapour from liquid nitrogen.
Typical superconductors only function at extremely low temperatures. Michelmond / Shutterstock[20]

There are also other types of topological insulators that work without an externally applied magnetic field. Current versions of these materials show zero resistance only at very low temperatures, but there appears to be no reason they couldn’t work at room temperature.

Unfortunately superfluid excitons and topological insulators can only carry a limited amount of current, and are probably not useful for creating powerful magnets. But they could still be useful for transmitting the tiny electrical signals used in computer chips, and my colleagues and I[21] are using them to create low-power electronic and computing technologies.

References

  1. ^ LK-99 (en.wikipedia.org)
  2. ^ two (arxiv.org)
  3. ^ papers (arxiv.org)
  4. ^ traditional (www.nytimes.com)
  5. ^ it seems LK-99 is not so special after all (www.nature.com)
  6. ^ the follow-ups (arxiv.org)
  7. ^ not (arxiv.org)
  8. ^ superconductor (arxiv.org)
  9. ^ not even (arxiv.org)
  10. ^ metal (arxiv.org)
  11. ^ Viral room-temperature superconductor claims spark excitement – and skepticism (theconversation.com)
  12. ^ pointed out (arxiv.org)
  13. ^ magnetic flux pinning (www.fleet.org.au)
  14. ^ Room-temperature superconductors could revolutionize electronics – an electrical engineer explains the materials' potential (theconversation.com)
  15. ^ frictionless superfluid (doi.org)
  16. ^ separating the electron and hole (doi.org)
  17. ^ supercurrents without resistance (doi.org)
  18. ^ topological insulators (www.youtube.com)
  19. ^ turned into a topological insulator (doi.org)
  20. ^ Michelmond / Shutterstock (www.shutterstock.com)
  21. ^ my colleagues and I (fleet.org.au)

Read more https://theconversation.com/hopes-fade-for-room-temperature-superconductor-lk-99-but-quantum-zero-resistance-research-continues-211733

The Times Features

What are physician assistants? Can they fix the doctor shortage?

If you’ve tried to get an appointment to see a GP or specialist recently, you will likely have felt the impact of Australia’s doctor shortages[1]. To alleviate workforce sho...

Do men and women agree on how easy it is for each other to find a job or a date?

Typically, you don’t have to write a cover letter before attending a candlelit dinner. But there are some eerie emotional parallels between finding a job and finding a date. ...

Australia’s clinical guidelines shape our health care. Why do so many still ignore sex and gender?

You’ve heard of the gender pay gap. What about the gap in medical care? Cardiovascular diseases – which can lead to heart attack and stroke – are one of the leading causes[1...

Don't Get Burned—Smart Insurance for Your Investment Property

Real estate investment offers lucrative opportunities even though it brings operational risks. Real estate investment protection fundamentally depends on obtaining the correct insu...

Why it’s important to actively choose the music for your mood

Many of us take pleasure in listening to music[1]. Music accompanies important life events and lubricates social encounters. It represents aspects of our existing identity, a...

The Link Between Heart Health and Ageing Well

Millions of Australians are at risk of heart disease, but fewer realise that keeping their heart healthy can also help protect their brain, memory, and cognitive function, redu...

Times Magazine

Improving Website Performance with a Cloud VPS

Websites represent the new mantra of success. One slow website may make escape for visitors along with income too. Therefore it's an extra offer to businesses seeking better performance with more scalability and, thus represents an added attracti...

Why You Should Choose Digital Printing for Your Next Project

In the rapidly evolving world of print media, digital printing has emerged as a cornerstone technology that revolutionises how businesses and creative professionals produce printed materials. Offering unparalleled flexibility, speed, and quality, d...

What to Look for When Booking an Event Space in Melbourne

Define your event needs early to streamline venue selection and ensure a good fit. Choose a well-located, accessible venue with good transport links and parking. Check for key amenities such as catering, AV equipment, and flexible seating. Pla...

How BIM Software is Transforming Architecture and Engineering

Building Information Modeling (BIM) software has become a cornerstone of modern architecture and engineering practices, revolutionizing how professionals design, collaborate, and execute projects. By enabling more efficient workflows and fostering ...

How 32-Inch Computer Monitors Can Increase Your Workflow

With the near-constant usage of technology around the world today, ergonomics have become crucial in business. Moving to 32 inch computer monitors is perhaps one of the best and most valuable improvements you can possibly implement. This-sized moni...

Top Tips for Finding a Great Florist for Your Sydney Wedding

While the choice of wedding venue does much of the heavy lifting when it comes to wowing guests, decorations are certainly not far behind. They can add a bit of personality and flair to the traditional proceedings, as well as enhancing the venue’s ...

LayBy Shopping