The Times Australia
Google AI
The Times World News

.

How should a robot explore the Moon? A simple question shows the limits of current AI systems

  • Written by Sally Cripps, Director of Technology UTS Human Technology Institute, Professor of Mathematcis and Statistics, University of Technology Sydney
How should a robot explore the Moon? A simple question shows the limits of current AI systems

Rapid progress in artificial intelligence (AI) has spurred some leading voices in the field to call for a research pause[1], raise the possibility of AI-driven human extinction[2], and even ask for government regulation[3]. At the heart of their concern is the idea AI might become so powerful we lose control of it.

But have we missed a more fundamental problem?

Ultimately, AI systems should help humans make better, more accurate decisions. Yet even the most impressive and flexible of today’s AI tools – such as the large language models behind the likes of ChatGPT – can have the opposite effect.

Why? They have two crucial weaknesses. They do not help decision-makers understand causation or uncertainty. And they create incentives to collect huge amounts of data and may encourage a lax attitude to privacy, legal and ethical questions and risks.

Cause, effect and confidence

ChatGPT and other “foundation models” use an approach called deep learning to trawl through enormous datasets and identify associations between factors contained in that data, such as the patterns of language or links between images and descriptions. Consequently, they are great at interpolating – that is, predicting or filling in the gaps between known values.

Interpolation is not the same as creation. It does not generate knowledge, nor the insights necessary for decision-makers operating in complex environments.

However, these approaches require huge amounts of data. As a result, they encourage organisations to assemble enormous repositories of data – or trawl through existing datasets collected for other purposes. Dealing with “big data” brings considerable risks around security, privacy, legality and ethics.

Read more: Robots are creating images and telling jokes. 5 things to know about foundation models and the next generation of AI[4]

In low-stakes situations, predictions based on “what the data suggest will happen” can be incredibly useful. But when the stakes are higher, there are two more questions we need to answer.

The first is about how the world works: “what is driving this outcome?” The second is about our knowledge of the world: “how confident are we about this?”

From big data to useful information

Perhaps surprisingly, AI systems designed to infer causal relationships don’t need “big data”. Instead, they need useful information. The usefulness of the information depends on the question at hand, the decisions we face, and the value we attach to the consequences of those decisions.

To paraphrase the US statistician and writer Nate Silver, the amount of truth[5] is approximately constant irrespective of the volume of data we collect.

So, what is the solution? The process starts with developing AI techniques that tell us what we genuinely don’t know, rather than producing variations of existing knowledge.

Why? Because this helps us identify and acquire the minimum amount of valuable information, in a sequence that will enable us to disentangle causes and effects.

A robot on the Moon

Such knowledge-building AI systems exist already.

As a simple example, consider a robot sent to the Moon to answer the question, “What does the Moon’s surface look like?”

The robot’s designers may give it a prior “belief” about what it will find, along with an indication of how much “confidence” it should have in that belief. The degree of confidence is as important as the belief, because it is a measure of what the robot doesn’t know.

The robot lands and faces a decision: which way should it go?

Read more: Bayes' Theorem: the maths tool we probably use every day, but what is it?[6]

Since the robot’s goal is to learn as quickly as possible about the Moon’s surface, it should go in the direction that maximises its learning. This can be measured by which new knowledge will reduce the robot’s uncertainty about the landscape – or how much it will increase the robot’s confidence in its knowledge.

The robot goes to its new location, records observations using its sensors, and updates its belief and associated confidence. In doing so it learns about the Moon’s surface in the most efficient manner possible.

Robotic systems like this – known as “active SLAM” (Active Simultaneous Localisation and Mapping) – were first proposed more than 20 years ago[7], and they are still an active area of research[8]. This approach of steadily gathering knowledge and updating understanding is based on a statistical technique called Bayesian optimisation[9].

Mapping unknown landscapes

A decision-maker in government or industry faces more complexity than the robot on the Moon, but the thinking is the same. Their jobs involve exploring and mapping unknown social or economic landscapes.

Suppose we wish to develop policies to encourage all children to thrive at school and finish high school. We need a conceptual map of which actions, at what time, and under what conditions, will help to achieve these goals.

Using the robot’s principles, we formulate an initial question: “Which intervention(s) will most help children?”

Next, we construct a draft conceptual map using existing knowledge. We also need a measure of our confidence in that knowledge.

Then we develop a model that incorporates different sources of information. These won’t be from robotic sensors, but from communities, lived experience, and any useful information from recorded data.

After this, based on the analysis informing the community and stakeholder preferences, we make a decision: “Which actions should be implemented and under which conditions?”

Finally, we discuss, learn, update beliefs and repeat the process.

Learning as we go

This is a “learning as we go” approach. As new information comes to hand, new actions are chosen to maximise some pre-specified criteria.

Where AI can be useful is in identifying what information is most valuable, via algorithms that quantify what we don’t know. Automated systems can also gather and store that information at a rate and in places where it may be difficult for humans.

AI systems like this apply what is called a Bayesian decision-theoretic framework[10]. Their models are explainable and transparent, built on explicit assumptions. They are mathematically rigorous and can offer guarantees.

They are designed to estimate causal pathways, to help make the best intervention at the best time. And they incorporate human values by being co-designed and co-implemented by the communities that are impacted.

We do need to reform our laws and create new rules to guide the use of potentially dangerous AI systems. But it’s just as important to choose the right tool for the job in the first place.

Read more https://theconversation.com/how-should-a-robot-explore-the-moon-a-simple-question-shows-the-limits-of-current-ai-systems-199180

Times Magazine

AI is failing ‘Humanity’s Last Exam’. So what does that mean for machine intelligence?

How do you translate ancient Palmyrene script from a Roman tombstone? How many paired tendons ...

Does Cloud Accounting Provide Adequate Security for Australian Businesses?

Today, many Australian businesses rely on cloud accounting platforms to manage their finances. Bec...

Freak Weather Spikes ‘Allergic Disease’ and Eczema As Temperatures Dip

“Allergic disease” and eczema cases are spiking due to the current freak weather as the Bureau o...

IPECS Phone System in 2026: The Future of Smart Business Communication

By 2026, business communication is no longer just about making and receiving calls. It’s about speed...

With Nvidia’s second-best AI chips headed for China, the US shifts priorities from security to trade

This week, US President Donald Trump approved previously banned exports[1] of Nvidia’s powerful ...

Navman MiVue™ True 4K PRO Surround honest review

If you drive a car, you should have a dashcam. Need convincing? All I ask that you do is search fo...

The Times Features

Do You Need a Building & Pest Inspection for New Homes in Melbourne?

Many buyers assume that a brand-new home does not need an inspection. After all, everything is new...

A Step-by-Step Guide to Planning Your Office Move in Perth

Planning an office relocation can be a complex task, especially when business operations need to con...

What’s behind the surge in the price of gold and silver?

Gold and silver don’t usually move like meme stocks. They grind. They trend. They react to inflati...

State of Play: Nationals vs Liberals

The State of Play with the National Party and How Things Stand with the Liberal Party Australia’s...

SMEs face growing payroll challenges one year in on wage theft reforms

A year after wage theft reforms came into effect, Australian SMEs are confronting a new reality. P...

Evil Ray declares war on the sun

Australians love the sun. The sun doesn't love them back. Melanoma takes over 1,300 Australian liv...

Resolutions for Renovations? What to do before renovating in 2026

Rolling into the New Year means many Aussies have fresh plans for their homes with renovat...

Designing an Eco Conscious Kitchen That Lasts

Sustainable kitchens are no longer a passing trend in Australia. They reflect a growing shift towa...

Why Sydney Entrepreneur Aleesha Naxakis is Trading the Boardroom for a Purpose-Driven Crown

Roselands local Aleesha Naxakis is on a mission to prove that life is a gift...