The Times Australia
The Times World News

.
Men's Weekly

.

could a solution to the climate challenge be buried in the depths of fiords?

  • Written by Rebecca J McLeod, Senior Research Fellow in Marine Ecology, University of Otago
could a solution to the climate challenge be buried in the depths of fiords?

Cyclone Gabrielle has highlighted forestry slash as a problematic aspect of relying on plantation forests to draw down carbon dioxide (CO₂) from the atmosphere.

While we no doubt must prioritise reducing emissions, we will have to find other effective methods of CO₂ removal. This includes protecting and restoring natural carbon sinks.

Aotearoa New Zealand is a maritime nation with 94% of the continent of Zealandia under water. Marine sediments provide the largest store of organic carbon on Earth[1], so why aren’t we looking to the sea as we plan our way out of the climate crisis?

The concept of blue carbon (carbon captured by the marine environment) was coined around 15 years ago[2]. But it is only this week, as the UN Framework Convention on Climate Change (UNFCCC[3]) meets in Germany in preparation for the next climate summit in November, that blue carbon is emerging as a mainstream global option for carbon sequestration and accounting.

Blue carbon opportunities are varied, but it makes sense to focus first on the most productive marine carbon sinks. Research shows that fiords in temperate areas such as New Zealand’s Fiordland[4] and in Scotland[5] have some of the highest potential for carbon storage.

The emergence of blue carbon solutions

New Zealand’s Climate Change Commission recently released its draft advice[6] to inform the strategic direction of the government’s second emissions reduction plan, covering the 2026–2030 emissions budget.

In terms of carbon removals, we see heavy reliance on exotic pine forestry, despite the limitation that carbon held in production forests is only stored for as long as the trees remain standing or the products made from them endure. Forestry planting is also limited by availability of land.

Blue carbon opportunities range from the restoration of wetlands to seaweed farming. They differ markedly in the scientific understanding of the rate and permanence of carbon sequestration – and how ready they are to be developed into climate change policy[7]. The challenge lies in reliably measuring where and how fast carbon is being stored long term.

This can prove particularly challenging in scenarios where the place of carbon deposition (such as deep ocean sediments) is far removed from the place of carbon capture (the surface waters where photosynthesis occurs).

While there is growing international recognition that natural carbon stores should be protected, governments are particularly interested in management actions that lead to increased carbon capture and long-term storage.

Read more: Climate change: why we can't rely on regrowing coastal habitats to offset carbon emissions[8]

Such efforts, including the planting of mangrove forests in the tropics, need to reliably demonstrate “additionality” (more carbon being sequestered) and “permanence”. These verification requirements have slowed large-scale investment.

Mitre Peak in Milford Sound
Fiords in temperate regions may account for 11% of the global marine organic carbon burial. Shutterstock

Fiords are hotspots for carbon burial

The first blue carbon initiatives included coastal wetlands like mangrove forests and salt marshes. They were incorporated into carbon accounting under the UNFCCC in 2013[9]. But the coastal and deeper ocean also offer carbon sequestration opportunities.

It is well established[10] that organic carbon that settles to the seafloor and is quickly buried can result in long-term storage. Some aquatic environments are hotspots for carbon burial. Fiords in temperate areas, such as in Fiordland, are among the hottest of hotspots, burying the largest amount of organic carbon per area[11] in the world.

Fiords occupy less than 0.1% of Earth’s surface, but researchers estimate[12] they account for 11% of global marine organic carbon burial. In Fiordland, this process is amplified because additional organic material from the rainforest is deposited into the fiords and quickly sinks to deep low-oxygen environments where it is preserved.

Read more: From mangroves to fjords, coastal ecosystems can take up or emit greenhouse gases. But globally, they're a vital sink[13]

A recent estimate of New Zealand’s carbon budget derived from atmospheric measurements and modelling[14] found Fiordland’s carbon sink is larger than previously thought. It could potentially offset 10-20% of New Zealand’s annual greenhouse gas emissions.

Although Fiordland has a high level of protection, we don’t yet know whether there are human actions (for example, freshwater input from electricity generation[15]) that have altered the capacity of this massive carbon sink.

We also suspect the remarkable capacity of fiords to lock away carbon could be at risk in the future as the climate continues to change. Parts of Fiordland could lock away less carbon, or worse, switch from being carbon stores to carbon sources.

Looking to Scotland for leadership

Scotland is leading the way in the blue carbon space, having established a blue carbon forum in 2018 that facilitates science and policy development.

The growing global awareness of fiords as important blue carbon systems points to a new “fiord nations” partnership that could encourage stock assessments.

The Scottish government’s Bute House Agreement[16] (2021) includes a commitment to protect 10% of Scotland’s seas under Highly Protected Marine Area (HPMA[17]) designations. In a radical step, blue carbon potential is part of the selection of these HPMA sites.

Scottish sea lochs (or fiords) meet many of the criteria for HPMA designation, including their unique marine ecosystems and organic-rich sediments. This highlights a global leadership opportunity, where the protection of blue carbon hotspots might help change our appreciation of the growing pressures these forgotten seascapes are facing.

Read more: Seagrass meadows shrank by 92% in UK waters - restoring them could absorb carbon emissions and boost fish[18]

Under the Paris Agreement, countries regularly make climate pledges, known as Nationally Determined Contributions (NDCs[19]). They give a good sense of how ambitious each country is.

The UK’s latest NDC (2022) paints a comprehensive picture of aspirations for improving marine management in accordance with their marine strategy[20] to improve carbon sequestration and biodiversity. Indeed, Scotland published its own “indicative” NDC in 2021, in which it highlighted the potential for blue carbon.

New Zealand’s NDC[21], updated in 2021, dedicates just one sentence to the ocean, stating it “looks forward to considering” new methodologies regarding wetlands over time.

New Zealand does not yet have a marine policy. But the enormous potential of our seas and, specifically fiords, to sequester carbon[22] is becoming apparent. We could be doing so much more to understand, protect and restore parts of our coastline and seafloor that sequester carbon, potentially delivering benefits for climate, a sustainable blue economy and marine life.

References

  1. ^ largest store of organic carbon on Earth (www.frontiersin.org)
  2. ^ 15 years ago (royalsocietypublishing.org)
  3. ^ UNFCCC (unfccc.int)
  4. ^ Fiordland (www.otago.ac.nz)
  5. ^ Scotland (www.bluecarbon.scot)
  6. ^ draft advice (www.climatecommission.govt.nz)
  7. ^ developed into climate change policy (www.frontiersin.org)
  8. ^ Climate change: why we can't rely on regrowing coastal habitats to offset carbon emissions (theconversation.com)
  9. ^ 2013 (www.ipcc.ch)
  10. ^ well established (www.frontiersin.org)
  11. ^ burying the largest amount of organic carbon per area (www.nature.com)
  12. ^ researchers estimate (www.nature.com)
  13. ^ From mangroves to fjords, coastal ecosystems can take up or emit greenhouse gases. But globally, they're a vital sink (theconversation.com)
  14. ^ atmospheric measurements and modelling (acp.copernicus.org)
  15. ^ freshwater input from electricity generation (www.stuff.co.nz)
  16. ^ Bute House Agreement (www.gov.scot)
  17. ^ HPMA (www.gov.uk)
  18. ^ Seagrass meadows shrank by 92% in UK waters - restoring them could absorb carbon emissions and boost fish (theconversation.com)
  19. ^ NDCs (unfccc.int)
  20. ^ marine strategy (moat.cefas.co.uk)
  21. ^ New Zealand’s NDC (unfccc.int)
  22. ^ sequester carbon (news.clas.ufl.edu)

Read more https://theconversation.com/blue-carbon-could-a-solution-to-the-climate-challenge-be-buried-in-the-depths-of-fiords-205639

Times Magazine

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Science Behind Reverse Osmosis and Why It Matters

What is reverse osmosis? Reverse osmosis (RO) is a water purification process that removes contaminants by forcing water through a semi-permeable membrane. This membrane allows only water molecules to pass through while blocking impurities such as...

Foodbank Queensland celebrates local hero for National Volunteer Week

Stephen Carey is a bit bananas.   He splits his time between his insurance broker business, caring for his young family, and volunteering for Foodbank Queensland one day a week. He’s even run the Bridge to Brisbane in a banana suit to raise mon...

Senior of the Year Nominations Open

The Allan Labor Government is encouraging all Victorians to recognise the valuable contributions of older members of our community by nominating them for the 2025 Victorian Senior of the Year Awards.  Minister for Ageing Ingrid Stitt today annou...

CNC Machining Meets Stage Design - Black Swan State Theatre Company & Tommotek

When artistry meets precision engineering, incredible things happen. That’s exactly what unfolded when Tommotek worked alongside the Black Swan State Theatre Company on several of their innovative stage productions. With tight deadlines and intrica...

Uniden Baby Video Monitor Review

Uniden has released another award-winning product as part of their ‘Baby Watch’ series. The BW4501 Baby Monitor is an easy to use camera for keeping eyes and ears on your little one. The camera is easy to set up and can be mounted to the wall or a...

The Times Features

Running Across Australia: What Really Holds the Body Together?

How William Goodge’s 3,800km run reveals the connection between movement, mindset, and mental resilience As a business owner, I’ve come to realise that the biggest wins rarely com...

Telehealth is Transforming Healthcare Services in Australia

It has traditionally not been easy to access timely healthcare in Australia, particularly for people who live in remote areas. Many of them spend hours on the road just to see a...

Launchd Acquires Huume, Strengthening Creative Firepower Across Talent-Led Marketing

Launchd, a leader in talent, technology and brand partnerships, has announced its acquisition of influencer talent management agency Huume from IZEA. The move comes as the medi...

Vietnam's "Gold Coast" Emerges as Extraordinary Investment Frontier and Australian Inspired Way of Life

$2 Billion super-city in Vung Tau set to replicate Australia's Gold Coast success story A culturally metamorphic development aptly named "Gold Coast" is set to reshape Vietna...

Choosing the Wrong Agent Is the #1 Regret Among Aussie Property Sellers

Selling your home is often one of the largest financial transactions you’ll make, and for many Australians, it’s also one of the most emotional. A new survey of Australian home se...

Travel Insurance for Families: What Does it Cover and Why it’s Essential

Planning a family trip is exciting, but unexpected mishaps can turn your dream vacation into a stressful ordeal. That’s where travel insurance comes in—it’s your safety net when ...