The Times Australia
The Times World News

.
The Times Real Estate

.

Have we got the brain all wrong? A new study shows its shape is more important than its wiring

  • Written by James Pang, Research Fellow in Psychology, Monash University
Have we got the brain all wrong? A new study shows its shape is more important than its wiring

The human brain is made up of around 86 billion neurons, linked by trillions of connections. For decades, scientists have believed that we need to map this intricate connectivity in detail to understand how the structured patterns of activity defining our thoughts, feelings and behaviour emerge.

Our new study, published in Nature[1], challenges this view. We have discovered that patterns of activity in our neurons are more influenced by the shape of the brain – its grooves, contours, and folds – than by its complex interconnections.

The conventional view is that specific thoughts or sensations elicit activity in specific parts of the brain. However, our study reveals structured patterns of activity across nearly the entire brain, relating to thoughts and sensations in much the same way that a musical note arises from vibrations occurring along the entire length of a violin string, not just an isolated segment.

Function follows form

We uncovered this close relationship between shape and function by examining the natural patterns of excitation that can be supported by the anatomy of the brain. In these patterns, called “eigenmodes”, different parts of the brain are all excited at the same frequency.

Consider the musical notes played by a violin string. The notes arise from preferred vibrational patterns of the string that occur at specific, resonant frequencies. These preferred patterns are the eigenmodes of the string. They are determined by the string’s physical properties, such as its length, density, and tension.

In a similar way, the brain has its own preferred patterns of excitation, which are determined by its anatomical and physical properties. We set out to identify which specific anatomical properties of the brain most strongly affect these patterns.

A tale of two brains

According to conventional wisdom, the brain’s complex web of connections fundamentally sculpts its activity[2].

This perspective views the brain as a collection of discrete regions[3], each specialised for a specific function, such as vision or speech. These regions communicate[4] via interconnecting fibres called axons.

An illustration of a brain, showing one half as a web of dots and lines, and the other as a convoluted surface with wave patterns regions shaded red and blue.
Conventional models divide the brain into a web of discrete nodes. Our analysis suggests large-scale brain activity is instead dominated by waves of excitation. James Pang, Author provided

An alternative view, embodied by an approach to modelling brain activity called neural field theory[5], eschews this division of the brain into discrete areas.

This view focuses on how waves of cellular excitation[6] move continuously through brain tissue, like the ripples formed by raindrops falling into a pond. Just as the shape of the pond constrains the possible patterns formed by the ripples, wavelike patterns of activity are influenced by the three-dimensional shape[7] of the brain.

Comparing the two views

To compare the two views of the brain, we tested how easily the conventional, discrete view and the continuous, wave-based view can explain more than 10,000 different maps of brain activity[8]. The activity maps were obtained from thousands of functional magnetic resonance imaging (fMRI) experiments as people performed a wide array of cognitive, emotional, sensory, and motor tasks.

Read more: Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals[9]

We attempted to describe each activity map using eigenmodes based on the brain’s connectivity and eigenmodes based on the brain’s shape. We found that eigenmodes of brain shape – not connectivity – offer the most accurate account of these different activation patterns.

Brain waves and icebergs

We used computer simulations to confirm that the close link between brain shape and function is driven by wavelike activity propagating throughout the brain.

The simulations relied on a simple wave model that is widely used to study other physical phenomena, such as earthquakes and ocean currents. The model only uses the shape of the brain to constrain how the waves evolve through time and space.

An animation showing multicoloured waves of activity propagating around the brain. Simulations of waves in the brain resemble real activity. James Pang, Author provided

Despite its simplicity, this model explained brain activity better than a more sophisticated, state-of-the-art model[10] that tries to capture key physiological details of neuronal activity and the intricate pattern of connectivity between different brain regions.

We also found that most of the 10,000 different brain maps that we studied were associated with activity patterns spanning nearly the entire brain. This result again challenges conventional wisdom that activity during tasks occurs in discrete, isolated regions of the brain. In fact, it indicates that traditional approaches to brain mapping[11] may only reveal the tip of the iceberg when it comes to understanding how the brain works.

Together, our findings suggest that current models of brain function need to be updated. Rather than focusing solely on how signals pass between discrete regions, we should also investigate how waves of excitation travel through the brain.

In other words, ripples in a pond may be a more appropriate analogy for large-scale brain function than a telecommunication network.

A new approach to brain mapping

Our approach draws on centuries of work in physics and engineering. In these fields, the function of a system is understood with respect to the constraints imposed by its structure, as embodied by the system’s eigenmodes.

This approach has not been traditionally used in neuroscience. Instead, typical brain mapping methods rely on complex statistics to quantify brain activity[12] without any reference to the underlying physical and anatomical basis of those patterns.

The use of eigenmodes offers a way to use physical principles to understand how diverse patterns of activity arise from brain anatomy.

Our discovery also offers immediate practical benefits, since eigenmodes of brain shape are much simpler to quantify than those of brain connectivity.

This new approach opens possibilities for studying how brain shape affects function through evolution, development and ageing, and in brain disease.

Read more: Illuminating the brain one neuron and synapse at a time – 5 essential reads about how researchers are using new tools to map its structure and function[13]

References

  1. ^ Nature (doi.org)
  2. ^ fundamentally sculpts its activity (www.pnas.org)
  3. ^ discrete regions (www.nature.com)
  4. ^ communicate (www.nature.com)
  5. ^ neural field theory (mna.episciences.org)
  6. ^ waves of cellular excitation (www.nature.com)
  7. ^ influenced by the three-dimensional shape (www.sciencedirect.com)
  8. ^ 10,000 different maps of brain activity (neurovault.org)
  9. ^ Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals (theconversation.com)
  10. ^ state-of-the-art model (www.jneurosci.org)
  11. ^ traditional approaches to brain mapping (www.sciencedirect.com)
  12. ^ complex statistics to quantify brain activity (onlinelibrary.wiley.com)
  13. ^ Illuminating the brain one neuron and synapse at a time – 5 essential reads about how researchers are using new tools to map its structure and function (theconversation.com)

Read more https://theconversation.com/have-we-got-the-brain-all-wrong-a-new-study-shows-its-shape-is-more-important-than-its-wiring-206573

The Times Features

Why Staying Safe at Home Is Easier Than You Think

Staying safe at home doesn’t have to be a daunting task. Many people think creating a secure living space is expensive or time-consuming, but that’s far from the truth. By focu...

Lauren’s Journey to a Healthier Life: How Being a Busy Mum and Supportive Wife Helped Her To Lose 51kg with The Lady Shake

For Lauren, the road to better health began with a small and simple but significant decision. As a busy wife and mother, she noticed her husband skipping breakfast and decided ...

How to Manage Debt During Retirement in Australia: Best Practices for Minimising Interest Payments

Managing debt during retirement is a critical step towards ensuring financial stability and peace of mind. Retirees in Australia face unique challenges, such as fixed income st...

hMPV may be spreading in China. Here’s what to know about this virus – and why it’s not cause for alarm

Five years on from the first news of COVID, recent reports[1] of an obscure respiratory virus in China may understandably raise concerns. Chinese authorities first issued warn...

Black Rock is a popular beachside suburb

Black Rock is indeed a popular beachside suburb, located in the southeastern suburbs of Melbourne, Victoria, Australia. It’s known for its stunning beaches, particularly Half M...

What factors affect whether or not a person is approved for a property loan

Several factors determine whether a person is approved for a real estate loan. These factors help lenders assess the borrower’s ability to repay the loan and the risk involved...

Times Magazine

Lessons from the Past: Historical Maritime Disasters and Their Influence on Modern Safety Regulations

Maritime history is filled with tales of bravery, innovation, and, unfortunately, tragedy. These historical disasters serve as stark reminders of the challenges posed by the seas and have driven significant advancements in maritime safety regulat...

What workers really think about workplace AI assistants

Imagine starting your workday with an AI assistant that not only helps you write emails[1] but also tracks your productivity[2], suggests breathing exercises[3], monitors your mood and stress levels[4] and summarises meetings[5]. This is not a f...

Aussies, Clear Out Old Phones –Turn Them into Cash Now!

Still, holding onto that old phone in your drawer? You’re not alone. Upgrading to the latest iPhone is exciting, but figuring out what to do with the old one can be a hassle. The good news? Your old iPhone isn’t just sitting there it’s potential ca...

Rain or Shine: Why Promotional Umbrellas Are a Must-Have for Aussie Brands

In Australia, where the weather can swing from scorching sun to sudden downpours, promotional umbrellas are more than just handy—they’re marketing gold. We specialise in providing wholesale custom umbrellas that combine function with branding power. ...

Why Should WACE Students Get a Tutor?

The Western Australian Certificate of Education (WACE) is completed by thousands of students in West Australia every year. Each year, the pressure increases for students to perform. Student anxiety is at an all time high so students are seeking suppo...

What Are the Risks of Hiring a Private Investigator

I’m a private investigator based in Melbourne, Australia. Being a Melbourne Pi always brings interesting clients throughout Melbourne. Many of these clients always ask me what the risks are of hiring a private investigator.  Legal Risks One of the ...

LayBy Shopping