The Times Australia
Google AI
The Times World News

.

Supercomputers have revealed the giant 'pillars of heat' funnelling diamonds upwards from deep within Earth

  • Written by Ömer F. Bodur, Honorary Fellow, University of Wollongong
Supercomputers have revealed the giant 'pillars of heat' funnelling diamonds upwards from deep within Earth

Most diamonds are formed deep inside Earth and brought close to the surface in small yet powerful volcanic eruptions of a kind of rock called “kimberlite”.

Our supercomputer modelling[1], published in Nature Geoscience, shows these eruptions are fuelled by giant “pillars of heat” rooted 2,900 kilometres below ground, just above our planet’s core.

Understanding Earth’s internal history can be used to target mineral reserves – not only diamonds, but also crucial minerals such as nickel and rare earth elements.

Kimberlite and hot blobs

Kimberlite eruptions leave behind a characteristic deep, carrot-shaped “pipe” of kimberlite rock, which often contains diamonds. Hundreds of these eruptions[2] that occurred over the past 200 million years have been discovered around the world. Most of them were found in Canada (178 eruptions), South Africa (158), Angola (71) and Brazil (70).

Between Earth’s solid crust and molten core is the mantle, a thick layer of slightly goopy hot rock. For decades, geophysicists have used computers to study how the mantle slowly flows over long periods of time.

In the 1980s, one study showed[3] that kimberlite eruptions might be linked to small thermal plumes in the mantle – feather-like upward jets of hot mantle rising due to their higher buoyancy – beneath slowly moving continents.

Read more: Volcanoes, diamonds, and blobs: a billion-year history of Earth's interior shows it's more mobile than we thought[4]

It had already been argued[5], in the 1970s, that these plumes might originate from the boundary between the mantle and the core, at a depth of 2,900km.

Then, in 2010, geologists proposed[6] that kimberlite eruptions could be explained by thermal plumes arising from the edges of two deep, hot blobs anchored under Africa and the Pacific Ocean.

And last year, we reported that[7] these anchored blobs are more mobile than we thought.

However, we still didn’t know exactly how activity deep in the mantle was driving kimberlite eruptions.

Pillars of heat

Geologists assumed that mantle plumes could be responsible for igniting kimberlite eruptions. However, there was still a big question remaining: how was heat being transported from the deep Earth up to the kimberlites?

A snapshot of the global mantle convection model centred on subduction underneath the South American plate. Ömer F. Bodur, Author provided

To address this question, we used supercomputers[8] in Canberra, Australia to create three-dimensional geodynamic models of Earth’s mantle. Our models account for the movement of continents on the surface and into the mantle over the past one billion years.

We calculated the movements of heat upward from the core and discovered that broad mantle upwellings, or “pillars of heat”, connect the very deep Earth to the surface. Our modelling shows these pillars supply heat underneath kimberlites, and they explain most kimberlite eruptions over the past 200 million years.

A schematic representation of Earth’s heat pillars and how they bring heat to kimberlites, based on output from our geodynamic model. Ömer F. Bodur, Author provided

The model successfully captured kimberlite eruptions in Africa, Brazil, Russia and partly in the United States and Canada. Our models also predict previously undiscovered kimberlite eruptions occurred in East Antarctica and the Yilgarn Craton of Western Australia.

Earth’s “pillars of heat” in a global mantle convection model can be used to predict kimberlite eruptions. Credit: Ömer F. Bodur.

Towards the centre of the pillars, mantle plumes rise much faster and carry dense material across the mantle, which may explain chemical differences between kimberlites in different continents[9].

Our models do not explain some of the kimberlites in Canada, which might be related to a different geological process called “plate subduction”. We have so far predicted kimberlites back to one billion years ago, which is the current limit of reconstructions of tectonic plate movements[10].

References

  1. ^ supercomputer modelling (www.nature.com)
  2. ^ Hundreds of these eruptions (www.sciencedirect.com)
  3. ^ one study showed (www.sciencedirect.com)
  4. ^ Volcanoes, diamonds, and blobs: a billion-year history of Earth's interior shows it's more mobile than we thought (theconversation.com)
  5. ^ already been argued (www.nature.com)
  6. ^ geologists proposed (www.nature.com)
  7. ^ we reported that (theconversation.com)
  8. ^ supercomputers (nci.org.au)
  9. ^ different continents (www.nature.com)
  10. ^ reconstructions of tectonic plate movements (www.sciencedirect.com)

Read more https://theconversation.com/supercomputers-have-revealed-the-giant-pillars-of-heat-funnelling-diamonds-upwards-from-deep-within-earth-204905

Times Magazine

Freak Weather Spikes ‘Allergic Disease’ and Eczema As Temperatures Dip

“Allergic disease” and eczema cases are spiking due to the current freak weather as the Bureau o...

IPECS Phone System in 2026: The Future of Smart Business Communication

By 2026, business communication is no longer just about making and receiving calls. It’s about speed...

With Nvidia’s second-best AI chips headed for China, the US shifts priorities from security to trade

This week, US President Donald Trump approved previously banned exports[1] of Nvidia’s powerful ...

Navman MiVue™ True 4K PRO Surround honest review

If you drive a car, you should have a dashcam. Need convincing? All I ask that you do is search fo...

Australia’s supercomputers are falling behind – and it’s hurting our ability to adapt to climate change

As Earth continues to warm, Australia faces some important decisions. For example, where shou...

Australia’s electric vehicle surge — EVs and hybrids hit record levels

Australians are increasingly embracing electric and hybrid cars, with 2025 shaping up as the str...

The Times Features

The Evolution of Retail: From Bricks and Mortar to Online — What’s Next?

Retail has always been a mirror of society. As populations grew, cities formed, technology advan...

How hot is too hot? Here’s what to consider when exercising in the heat

If you like to exercise outdoors, summer gives you more chance to catch the daylight. It’s often...

Vendor Advocacy Fees

Vendor advocacy fees can vary widely based on a number of factors, including the type of service...

MYA Cosmetics launches in Australia with bold new collection designed for creative tweens

MYA Cosmetics has officially launched in Australia, introducing its 2026 collection featuring th...

How smart home materials can shield us from extreme heat and cut energy bills all year

Australia is getting hotter. Climate change is driving more frequent and prolonged extreme heatw...

What is autistic burnout? And what can you do about it?

Many autistic people face challenges in their daily life while navigating a world made for neuro...

What is ‘oatzempic’? Does it actually work for weight loss?

If you’ve spent any time on TikTok or Instagram lately, you may have seen people blending oats...

Freak Weather Spikes ‘Allergic Disease’ and Eczema As Temperatures Dip

“Allergic disease” and eczema cases are spiking due to the current freak weather as the Bureau o...

The Man Behind Sydney’s New Year’s Eve Midnight Moment: Jono Ma

When the clock strikes midnight on New Year’s Eve, Sydney will ring in 2026 powered by a high-volt...