The Times Australia
The Times World News

.
The Times Real Estate

.

Artemis 1 is off – and we’re a step closer to using Moon dirt for construction in space

  • Written by Matthew Shaw, PhD Candidate - Astrometallurgy, Swinburne University of Technology
Artemis 1 is off – and we’re a step closer to using Moon dirt for construction in space

NASA has just launched its first rocket in the Artemis program[1], which will, among other things, take scientific experiments to produce metal on the Moon.

In recent years, a number of businesses[2] and organisations have ramped up efforts to establish technologies on the Moon. But doing work in space is expensive. Sending just one kilogram of material to the Moon can cost[3] US$1.2 million (A$1.89 million).

What if we could save money by using the resources that are already there? This process is called in-situ resource utilisation, and it’s exactly what astrometallurgy researchers are trying to achieve.

Why the Moon?

The Moon has amazing potential for future space exploration. Its gravity is only one-sixth as strong as Earth’s, which makes it much easier to fly things from the Moon to Earth’s orbit than to fly them direct from Earth[4]! And in an industry where every kilogram costs a fortune, the ability to save money is extremely attractive.

Although people have been looking at making oxygen and rocket fuel in space for decades[5], the Artemis program marks the first time we have solid plans to make and use metal in space.

Read more: The Moon's top layer alone has enough oxygen to sustain 8 billion people for 100,000 years[6]

A number of companies[7] are looking at extracting metals and oxygen from Moon dirt. At first these will be demonstrations, but eventually Moon metal will be a viable option for construction in space.

As a researcher in this field, I expect that in about 10 to 20 years from now we’ll have demonstrated the ability to extract metals from the Moon, and will likely be using these to construct large structures in space. So exactly what will we be able to extract? And how would we do it?

What’s out there?

There are two main geological regions on the Moon, both of which you can see on a clear night. The dark areas are called the maria and have a higher concentration of iron and titanium. The light areas are called the highlands (or terrae) and have more aluminium.

An image of an almost-full Moon.
On a clear night, you can see the Moon’s two geologic regions – the darker maria and the lighter highlands. Shutterstock

In general, the dirt and rocks on the Moon contain silicon, oxygen, aluminium, iron, calcium, magnesium, titanium, sodium, potassium and manganese. That might sound like a mouthful, but it’s not really that much to choose from. There are some other trace elements, but dealing with those is a spiel for another day.

We know metals such as iron, aluminium and titanium are useful for construction[8]. But what about the others?

Well, it turns out when you have limited options (and the alternative is spending a small fortune), scientists can get pretty creative. We can use silicon to make solar panels[9], which could be a primary source of electricity on the Moon. We could use magnesium, manganese and chromium to make metal alloys with interesting properties[10], and sodium and potassium as coolants[11].

There are also studies looking at using the reactive metals (aluminium, iron, magnesium, titanium, silicon, calcium) as a form of battery or “energy carrier[12]”. If we really needed to, we could even use them as a form of solid rocket fuel[13].

So we do have options when it comes to sourcing and using metals on the Moon. But how do we get to them?

Read more: Artemis 1: how this 2022 lunar mission will pave the way for a human return to the Moon[14]

How would extraction work?

While the Moon has metals in abundance, they’re bound up in the rocks as oxides – metals and oxygen stuck together. This is where astrometallurgy comes in, which is simply the study of extracting metal from space rocks.

Metallurgists use a variety of methods to separate metals and oxygen from within rocks. Some of the more common extraction methods use chemicals such as hydrogen[15] and carbon[16].

Some such as “electrolytic separation” use pure electricity[17], while more novel solutions involve completely vaporising the rocks[18] to make metal. If you’re interested in a full rundown of lunar astrometallurgy you can read about it in one of my research papers[19].

Researchers at the University of Glasgow used an electrolysis separation process to get a pile of metal (right) from simulated Moon dirt (left). Beth Lomax/University of Glasgow

Regardless of the method used, extracting and processing metals in space presents many challenges.

Some challenges are obvious. The Moon’s relatively weak gravity means traction is basically nonexistent, and digging the ground like we do on Earth isn’t an option. Researchers are working on[20] these problems.

There’s also a lack of important resources such as water, which is often used for metallurgy on Earth.

Other challenges are more niche. For instance, one Moon day is as long as 28 Earth days. So for two weeks you have ample access to the Sun’s power and warmth … but then you have two weeks of night.

Temperatures also fluctuate wildly, from 120℃ during the day to -180℃ at night. Some permanently shadowed areas drop below -220℃[21]! Even if resource mining and processing were being done remotely from Earth, a lot of equipment wouldn’t withstand these conditions.

That brings us to the human factor: would people themselves be up there helping out with all of this?

Probably not. Although we’ll be sending more people to the Moon in the future, the dangers of meteorite impacts, radiation exposure from the Sun, and extreme temperatures mean this work will need to be done remotely. But controlling robots hundreds of thousands of kilometres away is also a challenge.

Read more: So a helicopter flew on Mars for the first time. A space physicist explains why that's such a big deal[22]

It’s not all bad news, though, as we can actually use some of these factors to our advantage.

The extreme vacuum of space can reduce the energy requirements of some processes, since a vacuum helps substances vaporise at lower temperatures (which you can test by trying to boil water on a tall mountain[23]). A similar thing happens with molten rocks in space.

And while the Moon’s lack of atmosphere makes it uninhabitable for humans, it also means more access to sunlight for solar panels and direct solar heating.

While it may take a few more years to get there, we’re well on our way to making things in space from Moon metal. Astrometallurgists will be looking on with keen interest as future Artemis missions take off with the tools to make this happen.

Artemis 1 took off spectacularly just after 5pm AEDT on November 16.

References

  1. ^ Artemis program (www.nasa.gov)
  2. ^ a number of businesses (ispace-inc.com)
  3. ^ can cost (www.astrobotic.com)
  4. ^ fly them direct from Earth (www.sciencedirect.com)
  5. ^ in space for decades (adsabs.harvard.edu)
  6. ^ The Moon's top layer alone has enough oxygen to sustain 8 billion people for 100,000 years (theconversation.com)
  7. ^ A number of companies (www.lunarresources.space)
  8. ^ useful for construction (www.sciencedirect.com)
  9. ^ solar panels (www.goodreads.com)
  10. ^ interesting properties (ascelibrary.org)
  11. ^ coolants (onlinelibrary.wiley.com)
  12. ^ energy carrier (www.sciencedirect.com)
  13. ^ rocket fuel (ntrs.nasa.gov)
  14. ^ Artemis 1: how this 2022 lunar mission will pave the way for a human return to the Moon (theconversation.com)
  15. ^ hydrogen (oro.open.ac.uk)
  16. ^ carbon (www.jstage.jst.go.jp)
  17. ^ use pure electricity (dspace.mit.edu)
  18. ^ completely vaporising the rocks (ui.adsabs.harvard.edu)
  19. ^ one of my research papers (www.tandfonline.com)
  20. ^ working on (www.nasa.gov)
  21. ^ drop below -220℃ (www.sciencedirect.com)
  22. ^ So a helicopter flew on Mars for the first time. A space physicist explains why that's such a big deal (theconversation.com)
  23. ^ on a tall mountain (mountainhouse.com)

Read more https://theconversation.com/artemis-1-is-off-and-were-a-step-closer-to-using-moon-dirt-for-construction-in-space-191852

The Times Features

How to Choose the Perfect Outdoor Lift for Your Home

Choosing the right outdoor lift for your home is a decision that blends functionality, aesthetics, and safety. Outdoor lifts not only enhance mobility but also increase the value...

The Importance of Pre-Purchase Building Inspections

Purchasing a property is quite possibly one of the most significant financial decisions you'll ever make. The allure of a new home or investment can often overshadow the necessit...

The Legal Battle Against IP Theft: What Businesses Need to Know

So you've formulated that million-dollar idea and you're ready to take your business to the next level. You were so excited to publicize your supposedly next big thing that you...

Why Roof Replacement Is the Best Solution for Roofs with Major Leaks

When your roof is leaking extensively, the situation can be both frustrating and worrying. The constant drip-drip-drip of water, the potential for structural damage, and the risi...

Some vegetables are pretty low in fibre. So which veggies are high-fibre heroes?

Many people looking to improve their health try to boost fibre intake by eating more vegetables. But while all veggies offer health benefits, not all are particularly high i...

Why Your Tennis Game Isn’t Improving (And How to Fix It)

Tennis is a sport that demands precision, endurance, strategy, and mental toughness. Whether you play casually or competitively, you may reach a frustrating point where your prog...

Times Magazine

Why You Should Choose Digital Printing for Your Next Project

In the rapidly evolving world of print media, digital printing has emerged as a cornerstone technology that revolutionises how businesses and creative professionals produce printed materials. Offering unparalleled flexibility, speed, and quality, d...

What to Look for When Booking an Event Space in Melbourne

Define your event needs early to streamline venue selection and ensure a good fit. Choose a well-located, accessible venue with good transport links and parking. Check for key amenities such as catering, AV equipment, and flexible seating. Pla...

How BIM Software is Transforming Architecture and Engineering

Building Information Modeling (BIM) software has become a cornerstone of modern architecture and engineering practices, revolutionizing how professionals design, collaborate, and execute projects. By enabling more efficient workflows and fostering ...

How 32-Inch Computer Monitors Can Increase Your Workflow

With the near-constant usage of technology around the world today, ergonomics have become crucial in business. Moving to 32 inch computer monitors is perhaps one of the best and most valuable improvements you can possibly implement. This-sized moni...

Top Tips for Finding a Great Florist for Your Sydney Wedding

While the choice of wedding venue does much of the heavy lifting when it comes to wowing guests, decorations are certainly not far behind. They can add a bit of personality and flair to the traditional proceedings, as well as enhancing the venue’s ...

Avant Stone's 2025 Nature's Palette Collection

Avant Stone, a longstanding supplier of quality natural stone in Sydney, introduces the 2025 Nature’s Palette Collection. Curated for architects, designers, and homeowners with discerning tastes, this selection highlights classic and contemporary a...

LayBy Shopping