The Times Australia
The Times World News

.
The Times Real Estate

.

DNA is often used in solving crimes. But how does DNA profiling actually work?

  • Written by Adrian Linacre, Professor of Forensic Genetics, Flinders University
DNA is often used in solving crimes. But how does DNA profiling actually work?

DNA profiling is frequently in the news. Public interest is sparked when DNA is used to identify a suspect[1] or human remains[2], or resolves a cold case[3] that seems all but forgotten.

Very occasionally, it is in the media when the process doesn’t work as it should[4].

So what is DNA profiling and how does it work – and why does it sometimes not work?

Read more: Australia has 2,000 missing persons and 500 unidentified human remains – a dedicated lab could find matches[5]

A short history of DNA profiling

DNA profiling, as it has been known since 1994, has been used in the criminal justice system since the late 1980s, and was originally termed “DNA fingerprinting”.

The DNA in every human is very similar – up to 99.9% identical[6], in fact. But strangely, about 98% of the DNA in our cells[7] is not gene-related (i.e. has no known function).

This non-coding DNA is largely comprised of sequences of the four bases that make up the DNA in every cell.

A simple chart showing the very basics of the structure of DNA
The four DNA bases are guanine, cytosine, thymine and adenine, forming G-C and T-A pairs. jaoad maha/Shutterstock

But for reasons unknown, some sections of the sequence are repeated: an example is TCTATCTATCTATCTATCTA where the sequence TCTA is repeated five times. While the number of times this DNA sequence is repeated is constant within a person, it can vary between people. One person might have 5 repeats but another 6, or 7 or 8.

There are a large number of variants and all humans fall into one of them. The detection of these repeats is the bedrock of modern DNA profiling. A DNA profile is a list of numbers, based on the repeated sequences we all have.

The use of these short repeat sequences (the technical term is “short tandem repeat[8]” or STR) started in 1994 when the UK Forensic Science Service identified four of these regions[9]. The chance that two people taken at random in the population would share the same repeat numbers at these four regions was about 1 in 50,000.

Now, the number of known repeat sequences has expanded greatly, with the latest test looking at 24 STR regions. Using all of the known STR regions results in an infinitesimally small probability that any two random people have the same DNA profile. And herein lies the power of DNA profiling.

A knife on the ground with the number five on a yellow card in the background
Swabbing an item left at a crime scene can easily yield enough cells to generate a DNA profile. Fuss Sergey/Shutterstock

How is DNA profiling performed?

The repeat sequence will be the same in every cell within a person – thus, the DNA profile from a blood sample will be the same as from a plucked hair, inside a tooth, saliva, or skin. It also means a DNA profile will not in itself indicate from what type of tissue it originated.

Consider a knife alleged to be integral to an investigation. A question might be “who held the knife”? A swab (cotton or nylon) will be moistened and rubbed over the handle to collect any cells present.

The swab will then be placed in a tube containing a cocktail of chemicals that purifies the DNA from the rest of the cellular material – this is a highly automated process. The amount of DNA will then be quantified.

If there is sufficient DNA present, we can proceed to generate a DNA profile. The optimum amount of DNA needed to generate the profile is 500 picograms – this is really tiny and represents only 80 cells!

A colourful chart on a screen with DNA base code underneath
DNA profiling relies on finding repeated sequences in a sample. fotohunter/Shutterstock

How foolproof is DNA profiling?

DNA profiling is highly sensitive, given it can work from only 80 cells. This is microscopic: the tiniest pinprick of blood holds thousands of blood cells.

Consider said knife – if it had been handled by two people, perhaps including a legitimate owner and a person of interest, yet only 80 cells are present, those 80 cells would not be from only one person but two. Hence there is now a less-than-optimal amount of DNA from either of the people, and the DNA profiling will be a mixture of the two.

Fortunately, there are several[10] types of software[11] to pull apart these mixed DNA profiles. However, the DNA profile might be incomplete (the term for this is “partial”); with less DNA data, there will be a reduced power to identify the person.

Worse still, there may be insufficient DNA to generate any meaningful DNA profile at all. If the sensitivity of the testing is pushed further, we might obtain a DNA profile from even a few cells. But this could implicate a person who may have held the knife innocently weeks prior to an alleged event; or be from someone who shook hands with another person who then held the knife.

This later event is called “indirect transfer” and is something to consider with such small amounts of DNA.

Read more: Criminals can't easily edit their DNA out of forensic databases[12]

What can’t DNA profiling do?

In forensics, using DNA means comparing a profile from a sample to a reference profile, such as taken from a witness, persons of interest, or criminal DNA databases.

By itself, a DNA profile is a set of numbers. The only thing we can figure out is whether the owner of the DNA has a Y-chromosome – that is, their biological sex is male.

A standard STR DNA profile does not indicate anything about the person’s appearance, predisposition to any diseases, and very little about their ancestry.

Other types of DNA testing, such as paternity testing and the ones used in genealogy, can be used to associate the DNA at a crime scene to potential genetic relatives of the person – but current standard STR DNA profiling will not link to anyone other that perhaps very close relatives – parents, offspring, or siblings.

DNA profiling has been, and will continue to be, an incredibly powerful forensic test to answer “whose biological material is this”? This is its tremendous strength. As to how and when that material got there, that’s for different methods to sort out.

Read more: New technology lets police link DNA to appearance and ancestry – and it's coming to Australia[13]

Read more https://theconversation.com/dna-is-often-used-in-solving-crimes-but-how-does-dna-profiling-actually-work-191937

The Times Features

How to buy a coffee machine

For coffee lovers, having a home coffee machine can transform your daily routine, allowing you to enjoy café-quality drinks without leaving your kitchen. But with so many optio...

In the Digital Age, Online Promotion Isn't Just an Option for Small Businesses – It's a Necessity

The shift to an online-first consumer landscape means small businesses must embrace digital promotion to not only survive but thrive in 2025. From expanding reach to fostering cu...

Sorbet Balls by bubbleme Bring Bite-Sized Cool Spin to Frozen Snacking

A cool new frozen treat is rolling into the ice-cream aisle at Woolworths stores nationwide. Dairy-free, gluten-free and free from artificial colours, bubbleme Sorbet Balls ar...

Mind-Body Balance: The Holistic Approach of Personal Training in Moonee Ponds

Key Highlights Discover the benefits of a holistic approach to personal training in Moonee Ponds and nearby Maribyrnong, including residents from Strathmore. Learn how mind-b...

How Online Platforms Empower You to Find Affordable Removalists and Electricity Plans

When you move into a new home, you have many tasks to do. You need to hire removalists and set up your electricity.  In this article, we discuss how online platforms empower you ...

IS ROSEMARY OIL THE SECRET TO BETTER HAIR DAYS? HERE’S WHAT IT CAN DO

Rosemary hair oil is a straightforward natural solution that delivers exceptional results for anyone who wants to enhance their haircare process. It maintains its status in herba...

Times Magazine

CNC Machining Meets Stage Design - Black Swan State Theatre Company & Tommotek

When artistry meets precision engineering, incredible things happen. That’s exactly what unfolded when Tommotek worked alongside the Black Swan State Theatre Company on several of their innovative stage productions. With tight deadlines and intrica...

Uniden Baby Video Monitor Review

Uniden has released another award-winning product as part of their ‘Baby Watch’ series. The BW4501 Baby Monitor is an easy to use camera for keeping eyes and ears on your little one. The camera is easy to set up and can be mounted to the wall or a...

Top Benefits of Hiring Commercial Electricians for Your Business

When it comes to business success, there are no two ways about it: qualified professionals are critical. While many specialists are needed, commercial electricians are among the most important to have on hand. They are directly involved in upholdin...

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

LayBy Shopping