The Times Australia
The Times World News

.

Electricity from the cold ocean depths could one day power island states

  • Written by Rosalind Archer, Professor, Griffith University
Electricity from the cold ocean depths could one day power island states

In the tropics, the deep sea is cold and the sea surface is very warm. That temperature difference can be harnessed and turned into electricity. If we can improve the technology, this method of producing power could be a godsend for island nations reliant on expensive and polluting diesel for their power.

For more than a century, researchers have explored the idea of ocean thermal energy conversion. There’s nothing fundamentally new to the idea of extracting power from temperature differences. In fact, the underlying technology is similar to the way coal, gas and geothermal power plants create electricity, by using vapour to spin a turbine.

The challenge is finding the right spot, where the temperature differences make it worthwhile. That means relatively close to the equator – think north of Papua New Guinea, the Philippines and off the coast of southern Japan.

At present, pilot plants are only able to generate a fraction of what a large wind turbine can. But on the positive side, ocean thermal plants can generate power 24 hours a day.

Deep sea looking to surface
The deep sea is much colder than the surface. Shutterstock

How does it work?

These power plants operate by running liquids with low boiling points, such as ammonia, through a closed loop. The heat from warm sea water (between 20 and 30℃) heats the liquid until it turns into vapour and can be used to spin a turbine. Then, the vapour is exposed to cold sea water (around 5℃), which turns it back into a liquid so the cycle can continue. To get this cold water, these plants have pipes stretching down 600 metres into the deep sea.

The benefits of the system are clear: it’s a closed loop, heated and cooled by heat exchangers with no discharge of the fluid to the ocean. And it’s available at all times, in contrast to the well known intermittency challenges of better developed renewable technologies like solar and wind.

Read more: Small tropical islands could become the world's first 100% renewable nations[1]

The downside is at present, the technology isn’t ready for prime time. A pilot plant[2] in Hawaii installed by Makai Ocean Engineering in 2015 has a capacity of 100 kilowatts. That’s 20–30 times less than a typical wind turbine when operating, or the equivalent of around 12 solar arrays on homes or small businesses in Australia.

The main technical challenge to overcome is getting access to the large volumes of cold seawater required. Makai’s pilot uses a pipe one metre in diameter which plunges 670 metres into the ocean depths.

To scale up to a more useful 100 megawatt plant, Makai estimates the pipe would have to be ten metres in diameter and go as deep as one kilometre. This kind of infrastructure is expensive, and must be built to withstand corrosion and cyclones.

If the plants are built offshore, the cost of transmission lines adds to overall expense. Makai estimates 12 commercial scale offshore plants could cover Hawaii’s total electricity needs.

If OTEC plants can be built large enough, the cost will come down. But there’s another challenge too. To get close to wind and solar’s cost – now as low as 1–2 cents per kilowatt hour – ocean thermal plants would need around four Niagara Falls[3] worth of water flowing through the system at any one time.

Why is such a huge volume of water required? In short, a thermodynamic bottleneck. The physics of any energy conversion mean it’s impossible to convert all the heat energy into mechanical work like spinning the turbine. This efficiency issue is a real challenge for ocean thermal plants, where the energy conversion process has a relatively small temperature difference between warm and cool seawater. In turn, that means only a very small percentage of the heat energy in the seawater is converted to electricity.

ocean thermal energy plant Makai’s Ocean Thermal Energy Conversion pilot plant in Hawaii can produce 100kw of power. Wikimedia Commons, CC BY[4]

Could OTEC find a use despite the cost and technical challenges?

While these plants couldn’t compete with wind and solar in large mainland markets, they could have a role for the small island states dotting the Pacific and Caribbean, as well as islands far from the main grid, such as Norfolk Island or many of the smaller Indonesian islands.

Island nations, in particular, tend to have high retail electricity prices, low electricity demand and a reliance on imported diesel for electricity generation. Researchers from Korea and New Zealand have made the case[5] that OTEC could be a viable source of baseload power for island states – but only after more pilot plants are built to help perfect the design of larger plants.

Read more: Many small island nations can adapt to climate change with global support[6]

If I was tasked with helping an island state produce its own clean energy, I would first look at geothermal, a more mature technology with better economics. That’s because the areas most favourable for OTEC plants typically have significant potential for geothermal electricity, produced by drilling wells on land and using high temperature fluids from those wells.

Still, OTEC could play a useful role tackling several challenges at once. Take cooling. You can take the cool seawater and use as a form of air conditioning, as two resorts[7] in French Polynesia are doing. You can also use this cool water in aquaculture to raise cold-water fish such as salmon, or as a way of keeping surface water cool during marine heatwaves threatening fish farming[8] in New Zealand. It may even be possible to use OTEC plants to produce hydrogen[9] as an export commodity in small island states.

To meet our urgent emission reduction goals, it is worth exploring all renewable energy options.

We shouldn’t write off OTEC just yet. At this stage, however, it’s hard to see how ocean thermal plants can become competitive with better established renewables, such as wind, solar and even geothermal, given the vast volumes of cold seawater required. File this under “has potential, but needs more work”.

References

  1. ^ Small tropical islands could become the world's first 100% renewable nations (theconversation.com)
  2. ^ pilot plant (www.makai.com)
  3. ^ four Niagara Falls (eos.org)
  4. ^ CC BY (creativecommons.org)
  5. ^ made the case (www.mdpi.com)
  6. ^ Many small island nations can adapt to climate change with global support (theconversation.com)
  7. ^ two resorts (thalasso.intercontinental.com)
  8. ^ threatening fish farming (www.theguardian.com)
  9. ^ produce hydrogen (www.mdpi.com)

Read more https://theconversation.com/electricity-from-the-cold-ocean-depths-could-one-day-power-island-states-180413

Times Magazine

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an online presence that reflects your brand, engages your audience, and drives results. For local businesses in the Blue Mountains, a well-designed website a...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

The Times Features

What Makes a Small Group Tour of Italy So Memorable?

Traveling to Italy is on almost every bucket list. From the rolling hills of Tuscany to the sparkling canals of Venice, the country is filled with sights, flavors, and experiences ...

Latest data suggests Australia is overcoming its sugar addiction

Australia is now meeting the World Health Organization’s (WHO) guidelines[1] on sugar, which recommend keeping sugar below 10% of daily energy intake. New data[2] published ...

Do you really need a dental check-up and clean every 6 months?

Just over half of Australian adults[1] saw a dental practitioner in the past 12 months, most commonly for a check-up[2]. But have you been told you should get a check-up and c...

What is a Compounding Pharmacy and Why Do You Need One in Melbourne?

Ever picked up a prescription and thought, this pill is too big, too bitter, or full of things I cannot have? That is where a compounding chemist becomes important. A compounding p...

Deep Cleaning vs Regular Cleaning: Which One Do Perth Homes Really Need?

Whether you live in a coastal home in Cottesloe or a modern apartment in East Perth, keeping your living space clean isn’t just about aesthetics, it’s essential for your health and...

Rubber vs Concrete Wheel Stops: Which is Better for Your Car Park?

When it comes to setting up a car park in Perth, wheel stops are a small feature that make a big difference. From improving driver accuracy to preventing costly damage, the right c...