The Times Australia
The Times World News

.

How plate tectonics, mountains and deep-sea sediments have maintained Earth's 'Goldilocks' climate

  • Written by Dietmar Müller, Professor of Geophysics, University of Sydney
How plate tectonics, mountains and deep-sea sediments have maintained Earth's 'Goldilocks' climate

For hundreds of millions of years, Earth’s climate has warmed and cooled with natural fluctuations in the level of carbon dioxide (CO₂) in the atmosphere. Over the past century, humans have pushed CO₂ levels[1] to their highest in 2 million years – overtaking natural emissions[2] – mostly by burning fossil fuels, causing ongoing global warming that may make parts of the globe uninhabitable.

What can be done? As Earth scientists, we look to how natural processes have recycled carbon from atmosphere to Earth and back in the past to find possible answers to this question.

Our new research[3] published in Nature, shows how tectonic plates, volcanoes, eroding mountains and seabed sediment have controlled Earth’s climate in the geological past. Harnessing these processes may play a part in maintaining the “Goldilocks[4]” climate our planet has enjoyed.

From hothouse to ice age

Hothouse and icehouse climates[5] have existed in the geological past. The Cretaceous hothouse (which lasted from roughly 145 million to 66 million years ago) had atmospheric CO₂ levels above 1,000 parts per million, compared with around 420 today, and temperatures up to 10℃ higher than today.

But Earth’s climate began to cool around 50 million years ago[6] during the Cenozoic Era[7], culminating in an icehouse climate[8] in which temperatures dropped to roughly 7℃ cooler than today.

What kickstarted this dramatic change in global climate?

The Earth evolved from a hothouse climate in the Cretaceous Period (left) to an icehouse climate in the following Cenozoic Era (right), leading to inland ice sheets. F. Guillén and M. Antón / Wikimedia commons

Our suspicion was that Earth’s tectonic plates were the culprit. To better understand how tectonic plates store, move and emit carbon, we built a computer model of the tectonic “carbon conveyor belt”.

The carbon conveyor belt

Tectonic processes release carbon into the atmosphere at mid-ocean ridges - where two plates are moving away from each other - allowing magma to rise to the surface and create new ocean crust.

At the same time, at ocean trenches - where two plates converge - plates are pulled down and recycled back into the deep Earth. On their way down they carry carbon back into the Earth’s interior, but also release some CO₂ via volcanic activity.

The Earth’s tectonic carbon conveyor belt shifts massive amounts of carbon between the deep Earth and the surface, from mid-ocean ridges to subduction zones, where oceanic plates carrying deep-sea sediments are recycled back into the Earth’s interior. The processes involved play a pivotal role in Earth’s climate and habitability. Author provided

Our model shows that the Cretaceous hothouse climate was caused by very fast-moving tectonic plates, which dramatically increased CO₂ emissions from mid-ocean ridges.

In the transition to the Cenozoic icehouse climate tectonic plate movement slowed down and volcanic CO₂ emissions began to fall. But to our surprise, we discovered a more complex mechanism hidden in the conveyor belt system involving mountain building, continental erosion and burial of the remains of miscroscopic organisms on the seafloor.

The hidden cooling effect of slowing tectonic plates in the Cenozoic

Tectonic plates slow down due to collisions, which in turn leads to mountain building, such as the Himalayas and the Alps formed over the last 50 million years. This should have reduced volcanic CO₂ emissions but instead our carbon conveyor belt model revealed increased emissions.

We tracked their source to carbon-rich deep-sea sediments being pushed downwards to feed volcanoes, increasing CO₂ emissions and cancelling out the effect of slowing plates.

This video shows plate motions, carbon storage within tectonic plates and carbon degassing along mid-ocean ridges and subduction zones through time. Our carbon model shows these processes alone cannot explain global cooling in the Cenozoic Era. The effects of rock erosion, not shown here, played a key role. Arrows indicate plate motion speed.

So what exactly was the mechanism responsible for the drop in atmospheric CO₂?

The answer lies in the mountains that were responsible for slowing down the plates in the first place and in carbon storage in the deep sea.

As soon as mountains form, they start being eroded. Rainwater containing CO₂ reacts with a range of mountain rocks, breaking them down. Rivers carry the dissolved minerals into the sea. Marine organisms then use the dissolved products to build their shells, which ultimately become a part of carbon-rich marine sediments.

As new mountain chains formed, more rocks were eroded, speeding up this process. Massive amounts of CO₂ were stored away, and the planet cooled, even though some of these sediments were subducted with their carbon degassing via arc volcanoes.

Photographs showing white cliffs rising from the sea.
The limestone of the White Cliffs of Dover is an example of carbon-rich marine sediment, composed of the remains of tiny calcium carbonate skeletons of marine plankton. I Giel / Wikimedia, CC BY[9][10]

Rock weathering as a possible carbon dioxide removal technology

The Intergovernmental Panel on Climate Change (IPCC) says[11] large-scale deployment of carbon dioxide removal methods is “unavoidable” if the world is to reach net-zero greenhouse gas emissions.

Read more: On top of drastic emissions cuts, IPCC finds large-scale CO₂ removal from air will be "essential" to meeting targets[12]

The weathering of igneous rocks, especially rocks like basalt containing a mineral called olivine, is very efficient in reducing atmospheric CO₂. Spreading olivine on beaches could absorb up to a trillion tonnes of CO₂ from the atmosphere[13], according to some estimates[14].

The speed of current human-induced warming[15] is such that reducing our carbon emissions very quickly is essential to avoid catastrophic global warming. But geological processes, with some human help, may also have their role in maintaining Earth’s “Goldilocks” climate.

This study was carried out by researchers from the University of Sydney’s EarthByte Group[16], The University of Western Australia, the University of Leeds and the Swiss Federal Institute of Technology, Zurich using GPlates[17] open access modelling software. This was enabled by Australia’s National Collaborative Research Infrastructure Strategy (NCRIS) via AuScope[18] and The Office of the Chief Scientist and Engineer, NSW Department of Industry.

References

  1. ^ humans have pushed CO₂ levels (theconversation.com)
  2. ^ overtaking natural emissions (www.sciencedirect.com)
  3. ^ new research (www.nature.com)
  4. ^ Goldilocks (www.abc.net.au)
  5. ^ Hothouse and icehouse climates (theconversation.com)
  6. ^ cool around 50 million years ago (www.eurekalert.org)
  7. ^ Cenozoic Era (www.geosociety.org)
  8. ^ icehouse climate (theconversation.com)
  9. ^ I Giel / Wikimedia (commons.wikimedia.org)
  10. ^ CC BY (creativecommons.org)
  11. ^ says (www.ipcc.ch)
  12. ^ On top of drastic emissions cuts, IPCC finds large-scale CO₂ removal from air will be "essential" to meeting targets (theconversation.com)
  13. ^ absorb up to a trillion tonnes of CO₂ from the atmosphere (www.theguardian.com)
  14. ^ some estimates (www.vesta.earth)
  15. ^ human-induced warming (climate.nasa.gov)
  16. ^ EarthByte Group (www.earthbyte.org)
  17. ^ GPlates (www.gplates.org)
  18. ^ AuScope (www.auscope.org.au)

Read more https://theconversation.com/how-plate-tectonics-mountains-and-deep-sea-sediments-have-maintained-earths-goldilocks-climate-183725

Times Magazine

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Times Features

Exploring the Curriculum at a Modern Junior School in Melbourne

Key Highlights The curriculum at junior schools emphasises whole-person development, catering to children’s physical, emotional, and intellectual needs. It ensures early year...

Distressed by all the bad news? Here’s how to stay informed but still look after yourself

If you’re feeling like the news is particularly bad at the moment, you’re not alone. But many of us can’t look away – and don’t want to. Engaging with news can help us make ...

The Role of Your GP in Creating a Chronic Disease Management Plan That Works

Living with a long-term condition, whether that is diabetes, asthma, arthritis or heart disease, means making hundreds of small decisions every day. You plan your diet against m...

Troubleshooting Flickering Lights: A Comprehensive Guide for Homeowners

Image by rawpixel.com on Freepik Effectively addressing flickering lights in your home is more than just a matter of convenience; it's a pivotal aspect of both home safety and en...

My shins hurt after running. Could it be shin splints?

If you’ve started running for the first time, started again after a break, or your workout is more intense, you might have felt it. A dull, nagging ache down your shins after...

Metal Roof Replacement Cost Per Square Metre in 2025: A Comprehensive Guide for Australian Homeowners

In recent years, the trend of installing metal roofs has surged across Australia. With their reputation for being both robust and visually appealing, it's easy to understand thei...