The Times Australia
The Times World News

.
The Times Real Estate

.

Powerful X-rays reveal the birth of giant rare earth element deposits – and may give clues for sustainable mining

  • Written by Joël Brugger, Professor of Synchrotron Geosciences, Monash University
Powerful X-rays reveal the birth of giant rare earth element deposits – and may give clues for sustainable mining

More than ten years ago, the so-called “rare earth crisis[1]” highlighted the fragility of the supply chain of these metals, which are crucial for the transition to a carbon-neutral economy[2]. Most of the world’s supply of these minerals comes from a handful of giant ore deposits, but we still know little about how these deposits formed.

Despite the name, the rare earths are relatively widespread in Earth’s crust, compared with elements such as gold and platinum. Large, concentrated deposits suitable for mining, however, are much more scarce.

To understand how these deposits form, we recreated the hellish temperatures, pressures and chemical environments that occur kilometres below Earth’s surface, and used intense X-rays to probe the behaviour of rare earth elements down to the molecular level.

We discovered a previously unknown process[3] whereby rare earth elements can bind to a common chemical called carbonate in hot fluids at high pressure. This provides hints about how rare earth deposits form, and also about how we can reverse-engineer the process to extract these rare metals in a more sustainable way.

What does it take to form a giant rare earth deposit?

Rare earth elements have unique electromagnetic properties that make them essential for strong alloys and magnets used in wind turbines and electric vehicle motors, as well as smartphone screens and audio. Shutterstock

The rare earth elements[4] are a group of 15 soft, silvery heavy metals found at the bottom of the periodic table (from lanthanum to lutetium). Two more elements (scandium and yttrium) are also often included in the group, because of similarities in their chemical behaviour.

Today’s giant deposits of rare earth elements are associated with unusual types of molten rock called carbonatite and alkaline magmas. These magmas do not contain much silicon (the second-most abundant element in the Earth’s crust after oxygen), but instead include a lot of alkali metals (sodium and potassium), calcium and volatile elements such as carbon, fluorine or phosphorus.

Read more: What are rare earths, crucial elements in modern technology? 4 questions answered[5]

All rocks around us contain significant amounts of rare earth elements, but they become concentrated in these exotic magmas through slow crystallisation in Earth’s crust. This is usually not enough to make an ore deposit, which consists of millions of tonnes of rock made up of between 5 and 50% by weight of rare earth elements. A second step of concentration is required.

In giant deposits such as Bayan Obo in Inner Mongolia, hot fluids loaded with carbonate appear to have undergone this extra concentration step. But exactly how has been a mystery.

A safe ticket to Hades, with X-ray vision

We think rare earth ores formed kilometres below Earth’s surface. Millions of years ago, high temperatures (200-800℃) and pressures (hundreds to thousands of times greater than atmospheric pressure) transformed pre-existing concentrations of rare earth elements into valuable ores.

There is no way for geologists to go and watch ore forming, but we tried to do the next best thing.

Joël Brugger installing a new sample in the autoclave for X-ray measurements at high pressure and temperature at the ESRF synchrotron in Grenoble, France. Denis Testemale, CNRS

We were able to recreate and study something like the conditions that reigned during ore formation, using the French Absorption Spectroscopy Beamline (FAME) at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

We used a specially designed autoclave (a geological cooking pot) to create temperatures up to 600℃ and pressures up to 200 megapascals, which corresponds to depths of about 7km in Earth’s crust.

At the ESRF synchrotron, which is effectively a giant X-ray gun 100 billion times more powerful than a hospital X-ray device, we can probe the composition and molecular structure of fluids and dissolved materials inside the cooking pot. A safe ticket to Hades provided by X-ray vision!

Specifically, we probed how rare earth elements bonded with chlorine, fluorine, hydroxide or carbonate present in fluids at high pressures and temperatures. Reactions between the rare earth elements and these so-called “ligands” are responsible for the solubility of rare earth minerals.

New ways to extract rare earth elements

The results were unexpected. First, we discovered that fluids rich in carbonate can carry large amounts of rare earth elements. Second, adding fluorine had little effect on the fluids’ ability to carry rare earth elements.

This means that hot carbonate-rich fluids could transport rare earth elements and fluorine together – so common ore minerals such as bastnaesite (which is made of rare earth elements, carbonate and fluorine) could precipitate out of the fluid when it cools.

Fluids rich in carbonate and fluorine can carry large amounts of rare earth elements, depositing them in high grade deposits of economic ore. Diagram: Joël Brugger / Bastnaesite photo: Mischa Crumbach, Author provided

Our experiments also show that carbonate-rich fluids will concentrate more light rare earths (such as lanthanum) or heavy ones (such as gadolinium and ytterbium) at different temperatures. This is important for determining the economic value of ores, as some rare earth elements are more expensive than others.

Most importantly, the economic and environmental costs of rare earth element mining are strongly affected by the difficulty of separating the different elements. Many ores also contain radioactive elements such as uranium and thorium, which need to be dealt with.

Read more: Critical minerals are vital for renewable energy. We must learn to mine them responsibly[6]

Our results reveal a new avenue for rare earth element processing: using environmentally benign carbonate solutions to leach rare earth elements from ore at high temperatures.

In this way, we may be able to reverse-engineer the ore-forming process to extract the metals needed to sustain the world’s transition to a carbon-neutral economy.

Read more https://theconversation.com/powerful-x-rays-reveal-the-birth-of-giant-rare-earth-element-deposits-and-may-give-clues-for-sustainable-mining-178781

The Times Features

The Best Adjustable Bed and Mattress Packages for Comfort

The appropriate bed and mattress are essential for establishing the perfect sleep environment. If you seek a way to upgrade your sleep experience, adjustable bed and mattress pac...

Designing a Modern Home: Features That Will Make Your Dream House Stand Out

Designing your dream home is an exciting journey, and for many, it’s an opportunity to create a space that reflects their personal style, functionality needs, and modern trends. ...

Client Dinners Done Right: Tips for Meaningful Engagement

Client dinners offer more than just a meal—they’re an opportunity to build lasting business relationships in a more personal and relaxed setting. Done well, these dinners can str...

From Classic to Contemporary: 5 Timeless Costumes for Any Party

When it comes to dressing up for a costume party, you want to choose something that is not only fun but also memorable. Whether you're attending a Halloween event, a themed gathe...

Action Figures as Art: The Growing Trend of Custom Figures and Modding

Action figures have long been regarded as collectible items, valued by enthusiasts and fans for their connection to popular culture. However, in recent years, a growing trend has...

The Ultimate Guide to Securing Grants for Your Small Business in Australia

Running a small business in Australia comes with both opportunities and challenges. While it can be rewarding, funding your business through the early stages or periods of growth...

Times Magazine

Top Benefits of Hiring Commercial Electricians for Your Business

When it comes to business success, there are no two ways about it: qualified professionals are critical. While many specialists are needed, commercial electricians are among the most important to have on hand. They are directly involved in upholdin...

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

LayBy Shopping