The Times Australia
The Times World News

.
The Times Real Estate

.

Here's how researchers identify omicron and other COVID-19 variants

  • Written by Andre Hudson, Professor and Head of the Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology
Here's how researchers identify omicron and other COVID-19 variants

How do scientists detect new variants of the virus that causes COVID-19? The answer is a process called DNA sequencing[1].

Researchers sequence DNA to determine the order of the four chemical building blocks, or nucleotides[2], that make it up: adenine, thymine, cytosine and guanine. The millions to billions[3] of these building blocks paired up together collectively make up a genome[4] that contains all the genetic information an organism needs to survive.

When an organism replicates[5], it makes a copy of its entire genome to pass on to its offspring. Sometimes errors in the copying process can lead to mutations in which one or more building blocks are swapped, deleted or inserted. This may alter genes[6], the instruction sheets for the proteins that allow an organism to function, and can ultimately affect the physical characteristics of that organism. In humans, for example, eye and hair color[7] are the result of genetic variations that can arise from mutations. In the case of the virus that causes COVID-19, SARS-CoV-2[8], mutations can change its ability to spread, cause infection or even evade the immune system.

We are both biochemists[9] and microbiologists[10] who teach about and study the genomes of bacteria. We both use DNA sequencing in our research to understand how mutations affect antibiotic resistance. The tools we use to sequence DNA in our work are the same ones scientists are using right now to study the SARS-CoV-2 virus.

The first human genome took two decades to sequence. With advances in technology, scientists are now able to sequence DNA in a matter of hours.

How are genomes sequenced?

One of the earliest methods scientists used in the 1970s and 1980s was Sanger sequencing[11], which involves cutting up DNA into short fragments and adding radioactive or fluorescent tags to identify each nucleotide. The fragments are then put through an electric sieve that sorts them by size. Compared with newer methods, Sanger sequencing is slow and can process only relatively short stretches of DNA. Despite these limitations, it provides highly accurate data[12], and some researchers are still actively using this method to sequence SARS-CoV-2 samples[13].

Since the late 1990s[14], next-generation sequencing[15] has revolutionized how researchers collect data on and understand genomes. Known as NGS, these technologies are able to process much higher volumes of DNA at the same time, significantly reducing the amount of time it takes to sequence a genome.

There are two main types of NGS platforms: second-generation and third-generation sequencers.

Second-generation sequencing marks each nucleotide with a specific color.

Second-generation technologies[16] are able to read DNA directly. After DNA is cut up into fragments, short stretches of genetic material called adapters are added to give each nucleotide a different color. For example, adenine is colored blue and cytosine is colored red. Finally, these DNA fragments are fed into a computer and reassembled into the entire genomic sequence.

Third-generation technologies[17] like the Nanopore MinIon[18] directly sequence DNA by passing the entire DNA molecule through an electrical pore in the sequencer. Because each pair of nucleotides disrupts the electrical current in a particular way, the sequencer can read these changes and upload them directly to a computer. This allows clinicians to sequence samples at point-of-care clinical and treatment facilities. However, Nanopore sequences smaller volumes of DNA compared with other NGS platforms.

Third-generation sequencing detects changes in an electrical current to identify nucleotides.

Though each class of sequencer processes DNA in a different way, they can all report the millions or billions of building blocks that make up genomes in a short time – from a few hours to a few days. For example, the Illumina NovaSeq[19] can sequence roughly 150 billion nucleotides, the equivalent of 48 human genomes, in just three days.

Using sequencing data to fight coronavirus

So why is genomic sequencing such an important tool in combating the spread of SARS-CoV-2?

Rapid public health responses to SARS-CoV-2 require intimate knowledge of how the virus is changing over time. Scientists have been using genome sequencing to track SARS-CoV-2[20] almost in real time since the start of the pandemic. Millions of individual SARS-CoV-2 genomes have been sequenced and housed in various public repositories like the Global Initiative on Sharing Avian Influenza Data[21] and the National Center for Biotechnology Information[22].

Genomic surveillance has guided public health decisions as each new variant has emerged. For example, sequencing the genome of the omicron variant[23] allowed researchers to detect over 30 mutations in the spike protein that allows the virus to bind to cells in the human body. This makes omicron a variant of concern[24], as these mutations are known to contribute to the virus’s ability to spread. Researchers are still learning[25] about how these mutations might affect the severity of the infections omicron causes, and how well it’s able to evade current vaccines.

A screen showing sequences of the letters T, C, A and G.
This image shows a DNA readout of the alpha variant of SARS-CoV-2. A mutation is marked by dotted lines. Sebastian Gollnow/picture alliance via Getty Images[26]

Sequencing also has helped researchers identify variants that spread to new regions. Upon receiving a SARS-CoV-2 sample collected from a traveler who returned from South Africa on Nov. 22, 2021, researchers at the University of California, San Francisco, were able to detect omicron’s presence in five hours[27] and had nearly the entire genome sequenced in eight. Since then, the Centers for Disease Control and Prevention has been monitoring omicron’s spread[28] and advising the government on ways to prevent widespread community transmission.

The rapid detection of omicron worldwide[29] emphasizes the power of robust genomic surveillance and the value of sharing genomic data across the globe. Understanding the genetic makeup of the virus and its variants gives researchers and public health officials insights into how to best update public health guidelines and maximize resource allocation for vaccine and drug development. By providing essential information on how to curb the spread of new variants, genomic sequencing has saved and will continue to save countless lives over the course of the pandemic.

[Get the best of The Conversation, every weekend. Sign up for our weekly newsletter[30].]

References

  1. ^ DNA sequencing (www.genome.gov)
  2. ^ nucleotides (www.genome.gov)
  3. ^ millions to billions (dx.doi.org)
  4. ^ genome (www.nature.com)
  5. ^ an organism replicates (sciencing.com)
  6. ^ genes (medlineplus.gov)
  7. ^ eye and hair color (www.doi.org)
  8. ^ SARS-CoV-2 (doi.org)
  9. ^ biochemists (scholar.google.com)
  10. ^ microbiologists (scholar.google.com)
  11. ^ Sanger sequencing (www.nature.com)
  12. ^ highly accurate data (doi.org)
  13. ^ sequence SARS-CoV-2 samples (doi.org)
  14. ^ late 1990s (dx.doi.org)
  15. ^ next-generation sequencing (dx.doi.org)
  16. ^ Second-generation technologies (doi.org)
  17. ^ Third-generation technologies (dx.doi.org)
  18. ^ Nanopore MinIon (nanoporetech.com)
  19. ^ Illumina NovaSeq (www.illumina.com)
  20. ^ using genome sequencing to track SARS-CoV-2 (www.who.int)
  21. ^ Global Initiative on Sharing Avian Influenza Data (www.gisaid.org)
  22. ^ National Center for Biotechnology Information (www.ncbi.nlm.nih.gov)
  23. ^ omicron variant (www.cdc.gov)
  24. ^ variant of concern (www.who.int)
  25. ^ still learning (doi.org)
  26. ^ Sebastian Gollnow/picture alliance via Getty Images (www.gettyimages.com)
  27. ^ detect omicron’s presence in five hours (sanfrancisco.cbslocal.com)
  28. ^ monitoring omicron’s spread (www.cdc.gov)
  29. ^ rapid detection of omicron worldwide (www.cnn.com)
  30. ^ Sign up for our weekly newsletter (memberservices.theconversation.com)

Read more https://theconversation.com/genomic-sequencing-heres-how-researchers-identify-omicron-and-other-covid-19-variants-172935

The Times Features

Why Staying Safe at Home Is Easier Than You Think

Staying safe at home doesn’t have to be a daunting task. Many people think creating a secure living space is expensive or time-consuming, but that’s far from the truth. By focu...

Lauren’s Journey to a Healthier Life: How Being a Busy Mum and Supportive Wife Helped Her To Lose 51kg with The Lady Shake

For Lauren, the road to better health began with a small and simple but significant decision. As a busy wife and mother, she noticed her husband skipping breakfast and decided ...

How to Manage Debt During Retirement in Australia: Best Practices for Minimising Interest Payments

Managing debt during retirement is a critical step towards ensuring financial stability and peace of mind. Retirees in Australia face unique challenges, such as fixed income st...

hMPV may be spreading in China. Here’s what to know about this virus – and why it’s not cause for alarm

Five years on from the first news of COVID, recent reports[1] of an obscure respiratory virus in China may understandably raise concerns. Chinese authorities first issued warn...

Black Rock is a popular beachside suburb

Black Rock is indeed a popular beachside suburb, located in the southeastern suburbs of Melbourne, Victoria, Australia. It’s known for its stunning beaches, particularly Half M...

What factors affect whether or not a person is approved for a property loan

Several factors determine whether a person is approved for a real estate loan. These factors help lenders assess the borrower’s ability to repay the loan and the risk involved...

Times Magazine

Lessons from the Past: Historical Maritime Disasters and Their Influence on Modern Safety Regulations

Maritime history is filled with tales of bravery, innovation, and, unfortunately, tragedy. These historical disasters serve as stark reminders of the challenges posed by the seas and have driven significant advancements in maritime safety regulat...

What workers really think about workplace AI assistants

Imagine starting your workday with an AI assistant that not only helps you write emails[1] but also tracks your productivity[2], suggests breathing exercises[3], monitors your mood and stress levels[4] and summarises meetings[5]. This is not a f...

Aussies, Clear Out Old Phones –Turn Them into Cash Now!

Still, holding onto that old phone in your drawer? You’re not alone. Upgrading to the latest iPhone is exciting, but figuring out what to do with the old one can be a hassle. The good news? Your old iPhone isn’t just sitting there it’s potential ca...

Rain or Shine: Why Promotional Umbrellas Are a Must-Have for Aussie Brands

In Australia, where the weather can swing from scorching sun to sudden downpours, promotional umbrellas are more than just handy—they’re marketing gold. We specialise in providing wholesale custom umbrellas that combine function with branding power. ...

Why Should WACE Students Get a Tutor?

The Western Australian Certificate of Education (WACE) is completed by thousands of students in West Australia every year. Each year, the pressure increases for students to perform. Student anxiety is at an all time high so students are seeking suppo...

What Are the Risks of Hiring a Private Investigator

I’m a private investigator based in Melbourne, Australia. Being a Melbourne Pi always brings interesting clients throughout Melbourne. Many of these clients always ask me what the risks are of hiring a private investigator.  Legal Risks One of the ...

LayBy Shopping