The Times Australia
Fisher and Paykel Appliances
The Times World News

.

We created a microscope slide that could improve cancer diagnosis, by revealing the 'colour' of cancer cells

  • Written by Brian Abbey, Professor of Physics, La Trobe University
We created a microscope slide that could improve cancer diagnosis, by revealing the 'colour' of cancer cells

When we look at biological cells under a microscope, they’re usually not very colourful. Normally, to visualise them we have to artificially add colour — typically by staining. By doing so, we can see their shape and arrangement in a tissue and determine whether they’re healthy or not.

Sometimes, though, cell structure alone isn’t enough to accurately identify disease — which can lead to misdiagnosis and potentially fatal consequences for a patient. But what if there was a way to not only see the structure of cells, but also determine whether they are abnormal, simply by looking at their intrinsic colour under a microscope?

This was our team’s goal as we developed a new medical diagnostic tool called the NanoMslide. We modified a standard microscope slide to turn it into a powerful tool for breast cancer detection. Our research[1] is published today in Nature.

Early detection is key

It’s estimated[2] one in eight Australian women will be diagnosed with breast cancer by age 85. As with most cancers, catching the disease early is critical. However, an accurate diagnosis of the earliest stages of breast cancer requires identifying small numbers of diseased cells throughout a tissue, which can be incredibly challenging.

Human cancerous tissue viewed under miscroscope
Human cancerous tissue, viewed through a microscope with the NanoMslide applied. Author provided Normal (non-cancerous) human tissue, viewed through a microscope with the NanoMslide applied. Author provided

The NanoMslide can manipulate light at the nanoscale, causing cells to “light up” with vivid colour contrast. This makes it easier to recognise potentially cancerous cells (or benign abnormalities) within the tissue.

By providing a way to instantly distinguish which cells could be cancerous, the tool may help to reduce current uncertainty around very early-stage breast cancer detection. With mammogram screening, distinguishing breast abnormalities from early breast cancers upon biopsy is very important, particularly as misdiagnosis rates can be as high as 15%.

Read more: 'Devastated and sad' after 36 years of research — early detection of ovarian cancer doesn't save lives[3]

Major barriers in development

Incorporating nanotechnology into medical diagnostics presents a number of challenges. It took us six years of development to ensure NanoMslide would work effectively. In the end it was a combination of cutting-edge nanofabrication, a significant amount of trial-and-error and a bit of good fortune that led to our breakthrough.

For decades, researchers have known cancer cells tend to interact with light in a way that’s different to healthy cells. This is due to a variety of factors, such as the distribution of protein inside the cell and differences in its overall shape.

The main challenge is these differences can be extremely subtle and can present in a variety of ways. Previous approaches to differentiating cancer cells (without using stains or labels) have tended to use specialised microscopy equipment, or complex techniques.

But these approaches are difficult to incorporate into existing pathology workflows and can require specialist training and knowledge. So we took a radically different approach.

Success with human tissue

Rather than focusing on developing a better microscope, we focused on improving the microscope slide instead.

By developing a special nanofabricated coating, we modified the surface of an ordinary microscope slide and transformed it into one huge sensor. What’s truly remarkable is the structures of the sensor are just a few hundred nanometres across, yet are repeated with amazing precision across an area of tens of centimetres, or more.

Maintaining this level of precision, which is necessary for reliable fabrication at this scale, has taken advances in nanofabrication techniques that have only become commercially available in the past six years.

The NanoMslide is a large sensor fitted with cutting-edge nanotechnology capabilities. Author provided

The sensor is activated by visible light. And when an object such as a tissue or single cell comes into contact with the sensor’s surface, colours are produced. It is this feature which we’ve been able to optimise to allow pathologists to detect cells that are likely cancerous, just by looking at them.

The dyes which are currently used to stain tissues (to visualise cell shape and architecture) normally present as one or two colours. The NanoMslide renders tissues in beautiful full-colour contrast, making it easier to differentiate multiple types of cell on a single slide.

For our study, we tested the slides with expert breast-cancer pathologists, using both a mouse model and patient tissue. By starting with a well-characterised small-animal model, our team of physicists, cancer researchers and breast pathologists was able to develop the technology further.

We eventually reached the point where we could be confident some of the specific colours visible were indicative of cancerous cells. This led to further pathology assessments with patient tissue, where there is more complexity to contend with in terms of diagnosis.

Yet, even in this more challenging setting, the NanoMslide performed strongly. It also outperformed some commercial biomarkers, which are used as an aid for borderline diagnoses (where cancer is difficult to tell apart from benign abnormalities).

Like going from black and white to colour television

Because the technology doesn’t rely on any special function, or specific molecular interactions, it could potentially be applied to other types of cancer — even other types of disease. Another application now being worked on is to examine the results of liquid biopsies, such as cheek swabs, for immediate point-of-care analysis.

In April, we were fortunate to benefit from the opening of a new instrument at the Australian National Fabrication Facility to enable the scaling-up of production. This means NanoMslide can be moved from small-scale to medium-scale manufacture, allowing us to explore a number of different applications, and produce the numbers of slides required for further clinical validation.

The technology could also be hugely beneficial to the growing digital-pathology space, where the vivid colours generated by NanoMslide could help develop next-generation artificial intelligence algorithms to identify signs of disease.

Read more: Curious Kids: Why do people get cancer?[4]

Read more https://theconversation.com/we-created-a-microscope-slide-that-could-improve-cancer-diagnosis-by-revealing-the-colour-of-cancer-cells-169262

Times Magazine

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

The Times Features

Mineral vs chemical sunscreens? Science shows the difference is smaller than you think

“Mineral-only” sunscreens are making huge inroads[1] into the sunscreen market, driven by fears of “...

Here’s what new debt-to-income home loan caps mean for banks and borrowers

For the first time ever, the Australian banking regulator has announced it will impose new debt-...

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...

Aiper Scuba X1 Robotic Pool Cleaner Review: Powerful Cleaning, Smart Design

If you’re anything like me, the dream is a pool that always looks swimmable without you having to ha...

YepAI Emerges as AI Dark Horse, Launches V3 SuperAgent to Revolutionize E-commerce

November 24, 2025 – YepAI today announced the launch of its V3 SuperAgent, an enhanced AI platf...

What SMEs Should Look For When Choosing a Shared Office in 2026

Small and medium-sized enterprises remain the backbone of Australia’s economy. As of mid-2024, sma...

Anthony Albanese Probably Won’t Lead Labor Into the Next Federal Election — So Who Will?

As Australia edges closer to the next federal election, a quiet but unmistakable shift is rippli...