The Times Australia
The Times World News

.
Times Media

.

AI-powered weather and climate models are set to change the future of forecasting

  • Written by Sanaa Hobeichi, Research Associate, Climate Change Research Centre, UNSW Sydney

A new system for forecasting weather and predicting future climate uses artificial intelligence (AI) to achieve results comparable with the best existing models while using much less computer power, according to its creators.

In a paper published in Nature[1] today, a team of researchers from Google, MIT, Harvard and the European Centre for Medium-Range Weather Forecasts say their model offers enormous “computational savings” and can “enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system”.

The NeuralGCM model is the latest in a steady stream of research models that use advances in machine learning to make weather and climate predictions faster and cheaper.

What is NeuralGCM?

The NeuralGCM model aims to combine the best features of traditional models with a machine-learning approach.

At its core, NeuralGCM is what is called a “general circulation model”. It contains a mathematical description of the physical state of Earth’s atmosphere, and it solves complicated equations to predict what will happen in the future.

However, NeuralGCM also uses machine learning – a process of searching out patterns and regularities in vast troves of data – for some less well-understood physical processes, such as cloud formation. The hybrid approach makes sure that the output of the machine learning modules will be consistent with the laws of physics.

Google researchers explain the NeuralGCM model.

The resulting model can then be used for making forecasts of weather days and weeks in advance, as well as looking months and years ahead for climate predictions.

The researchers compared NeuralGCM against other models using a standardised set of forecasting tests called WeatherBench 2[2]. For three- and five-day forecasts, NeuralGCM did about as well as other machine-learning weather models such as Pangu[3] and GraphCast[4]. For longer-range forecasts, over ten and 15 days, NeuralGCM was about as accurate as the best existing traditional models.

NeuralGCM was also quite successful in forecasting less-common weather phenomena, such as tropical cyclones and atmospheric rivers.

Why machine learning?

Machine learning models are based on algorithms that learn patterns in the data they are fed with, then use this learning to make predictions. Because climate and weather systems are highly complex, machine learning models require vast amounts of historical observations and satellite data for training.

The training process is very expensive and requires a lot of computer power. However, after a model is trained, using it to make predictions is fast and cheap. This is a large part of their appeal for weather forecasting.

The high cost of training and low cost of use is similar to other kinds of machine learning models. GPT-4, for example, reportedly[5] took several months to train at a cost of more than US$100 million, but can respond to a query in moments.

A comparison of how NeuralGCM compares with leading models (AMIP) and real data (ERA5) at capturing climate change between 1980 and 2020. Google Research

A weakness of machine learning models is that they often struggle in unfamiliar situations – or in this case, extreme or unprecedented weather conditions. To do this, a model needs to be able to generalise, or extrapolate beyond the data it was trained on.

NeuralGCM appears to be better at this than other machine learning models, because its physics-based core provides some grounding in reality. As Earth’s climate changes, unprecedented weather conditions will become more common, and we don’t know how well machine learning models will keep up.

Nobody is actually using machine learning-based weather models for day-to-day forecasting yet. However, it is a very active area of research – and one way or another, we can be confident that the forecasts of the future will involve machine learning.

References

  1. ^ published in Nature (www.nature.com)
  2. ^ WeatherBench 2 (arxiv.org)
  3. ^ Pangu (www.nature.com)
  4. ^ GraphCast (www.science.org)
  5. ^ reportedly (www.wired.com)

Read more https://theconversation.com/ai-powered-weather-and-climate-models-are-set-to-change-the-future-of-forecasting-235186

The Times Features

FedEx Australia Announces Christmas Shipping Cut-Off Dates To Help Beat the Holiday Rush

With Christmas just around the corner, FedEx is advising Australian shoppers to get their presents sorted early to ensure they arrive on time for the big day. FedEx has reveale...

Will the Wage Price Index growth ease financial pressure for households?

The Wage Price Index’s quarterly increase of 0.8% has been met with mixed reactions. While Australian wages continue to increase, it was the smallest increase in two and a half...

Back-to-School Worries? 70% of Parents Fear Their Kids Aren’t Ready for Day On

Australian parents find themselves confronting a key decision: should they hold back their child on the age border for another year before starting school? Recent research from...

Democratising Property Investment: How MezFi is Opening Doors for Everyday Retail Investors

The launch of MezFi today [Friday 15th November] marks a watershed moment in Australian investment history – not just because we're introducing something entirely new, but becaus...

Game of Influence: How Cricket is Losing Its Global Credibility

be losing its credibility on the global stage. As other sports continue to capture global audiences and inspire unity, cricket finds itself increasingly embroiled in political ...

Amazon Australia and DoorDash announce two-year DashPass offer only for Prime members

New and existing Prime members in Australia can enjoy a two-year membership to DashPass for free, and gain access to AU$0 delivery fees on eligible DoorDash orders New offer co...

Times Magazine

An In-Depth Look at the Quality of Bottled Water Suppliers

History of Bottled Water Suppliers For centuries, people have been drinking from natural springs and rivers as a source of both hydration and nourishment. However, in the past few decades, bottled water has become increasingly popular as a conveni...

The Entrepreneur's Legal Toolkit

Essential Resources and When to Call in the Lawyers When it comes to entrepreneurship, laying a strong legal foundation is just as crucial as the business idea itself, if not more. As you embark on the exhilarating journey of building your enterpr...

The Future of Smartphones: Embracing Sustainability with Refurbished iPhones

Are you ready to revolutionize the way we use smartphones? In a world driven by technology, it's time for us to shift our focus towards sustainability. Say hello to refurbished iPhones - the game-changer that combines cutting-edge features with e...

Creating a Healthier Coop with Natural Bedding

Choose the right bedding this is the first step to providing a healthy atmosphere for your hens. Natural bedding materials promote improved air quality with minimal smells, disease prevention, and more. Organically and biodegradable chicken beddi...

The Paddle Board Offers the Ultimate Adventure

Types of Paddle Boards  Paddle boarding is one of the most popular outdoor activities and it is no surprise why. It’s a great way to explore nature, get some exercise, and just have fun! But before you invest in a paddle board, it’s essential to ...

Why Is Cyber Security Awareness Training Important?

Among the many concerning online trends observed during COVID-19, the rapid rise of cyberattacks stands out. During the global crisis, Australia experienced a significant increase in pandemic-related phishing scams, as criminals exploited widespr...