The Times Australia
The Times World News

.

World-first study decodes the DNA structure of a 52,000-year-old woolly mammoth sample

  • Written by Parwinder Kaur, Associate Professor | Director, DNA Zoo Australia, The University of Western Australia
World-first study decodes the DNA structure of a 52,000-year-old woolly mammoth sample

In a world-first study, we have revealed and analysed remarkably preserved fragments of ancient DNA from the skin of a woolly mammoth.

For the first time, we’ve been able to understand how the genetic instructions for this extinct species were organised inside its cells. This is known as genome architecture – the three-dimensional arrangement of DNA in the cell’s nucleus.

The research, published today in Cell[1], was a mammoth international effort, including teams from the United States, Australia, Denmark, Spain, Sweden, Russia and Norway. The discovery greatly enhances our understanding of a lost species.

By examining the genome architecture of the woolly mammoth, we can uncover the secrets of its survival in harsh environments – and its eventual extinction around 10,000 years ago[2]. Our discovery also brings unprecedented insights into ancient DNA and opens up new avenues for research in this field.

A new look at an extinct species

Genome architecture influences how genes are turned on or off. This impacts everything from development to disease. In modern species, scientists study genome architecture to understand how the genes are regulated, and how the cells of the organism function.

When applied to ancient DNA, it can illuminate the biological and environmental history of an extinct species – such as the woolly mammoth.

Along with some proteins, the DNA within cells is stashed in what’s known as chromatin[3]. It packages the long DNA molecules into a more compact, dense shape. This allows them to fit inside the cell nucleus.

The chromatin we found in our woolly mammoth sample from Siberia was remarkably well preserved, despite the animal having died 52,000 years ago.

The mammoth would have rapidly frozen after death. Its tissue was transformed due to the cold, dry and stable conditions. Although typically DNA degrades over time, in our sample we found it preserved in a glass-like state.

At the nanoscale, it’s akin to a bumper-to-bumper traffic jam where individual particles – in this case ancient DNA fragments – are immobilised and unable to move far from each other, even over thousands of years.

Gloved hands using a scalpel take a slice off a brown leathery substance.
A close-up of the mammoth skin sample being taken. Love Dalén/Stockholm University (used with permission)

Usually, the study of ancient genome architecture is particularly challenging because DNA falls apart relatively quickly. However, we adapted a genomic analysis technique that maps chromatin interactions, allowing us to delve into the ancient DNA structures we found in the sample.

We could count the individual chromosomes and learn that mammoths had 28 – just like their closest living relatives, elephants. Then, we dug deeper.

A strikingly familiar pattern

When we compared the genome architecture of the mammoth and the Asian elephant living today, we found a striking similarity. This suggests the ancient DNA sample still shows useful biological information.

The sample was so detailed, not only could we see which genes were activated in the mammoth genome, but also why. One key discovery was what we call “mammoth altered regions”. These were changes in gene activity specific to the species.

For instance, we found that genes involved in hair development and immune response showed different activity patterns in mammoths compared to elephants.

A drawing showing one half of a brown mammoth and a grey elephant on the other half. Juxtaposition of an ancient woolly mammoth and a modern elephant. Binia De Cahsan (used with permission)

The woolly mammoth had several unique physical traits adapted for cold environments. These included a thick, shaggy coat of fur and large tusks curving upwards.

They also had relatively small ears to minimise heat loss, and a specialised fat layer under the skin for insulation. These adaptations helped them thrive in ice age conditions.

A groundbreaking step forward

Our detailed work on the woolly mammoth’s genome architecture has provided a window into the past. By comparing them to their living relatives, we’ve found that crucial chromatin structures and gene regulation mechanisms have been preserved for more than 50,000 years.

This shows just how resilient genomic architecture can be on a grand evolutionary scale. The methods we developed to peer at the chromatin structures now open up new avenues of research.

As we continue to explore these ancient blueprints, we may uncover further secrets of how this extinct species adapted and thrived in its environment.

Our discovery may spark thoughts of resurrecting the woolly mammoth. However, our insights from studying ancient DNA might actually help the conservation of existing species.

What happened to the woolly mammoth in the Siberian permafrost was essentially natural biobanking[4] – preservation and storage of genetic material. If we do this proactively for currently endangered species, we can safeguard their genetic diversity for future generations.

This would also provide a crucial resource for scientific research and conservation efforts. Just as the frozen mammoths have yielded knowledge about their adaptations and evolutionary pathways, modern biobanking efforts can offer insights into species’ resilience to environmental changes, disease resistance, and other critical traits.

This knowledge is vital for informing conservation strategies. It will help us ensure the long-term survival of biodiversity in a rapidly changing world.

References

  1. ^ published today in Cell (cell.com)
  2. ^ eventual extinction around 10,000 years ago (www.britannica.com)
  3. ^ chromatin (en.wikipedia.org)
  4. ^ biobanking (www.forbes.com)

Read more https://theconversation.com/world-first-study-decodes-the-dna-structure-of-a-52-000-year-old-woolly-mammoth-sample-232387

Times Magazine

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

The Times Features

Is our mental health determined by where we live – or is it the other way round? New research sheds more light

Ever felt like where you live is having an impact on your mental health? Turns out, you’re not imagining things. Our new analysis[1] of eight years of data from the New Zeal...

Going Off the Beaten Path? Here's How to Power Up Without the Grid

There’s something incredibly freeing about heading off the beaten path. No traffic, no crowded campsites, no glowing screens in every direction — just you, the landscape, and the...

West HQ is bringing in a season of culinary celebration this July

Western Sydney’s leading entertainment and lifestyle precinct is bringing the fire this July and not just in the kitchen. From $29 lobster feasts and award-winning Asian banque...

What Endo Took and What It Gave Me

From pain to purpose: how one woman turned endometriosis into a movement After years of misdiagnosis, hormone chaos, and major surgery, Jo Barry was done being dismissed. What beg...

Why Parents Must Break the Silence on Money and Start Teaching Financial Skills at Home

Australia’s financial literacy rates are in decline, and our kids are paying the price. Certified Money Coach and Financial Educator Sandra McGuire, who has over 20 years’ exp...

Australia’s Grill’d Transforms Operations with Qlik

Boosting Burgers and Business Clean, connected data powers real-time insights, smarter staffing, and standout customer experiences Sydney, Australia, 14 July 2025 – Qlik®, a g...