The Times Australia
The Times World News

.
The Times Real Estate

.

A cosmic ‘speed camera’ just revealed the staggering speed of neutron star jets in a world first

  • Written by James Miller-Jones, Professor, Curtin University
A cosmic ‘speed camera’ just revealed the staggering speed of neutron star jets in a world first

How fast can a neutron star drive powerful jets into space? The answer, it turns out, is about one-third the speed of light, as our team has just revealed in a new study[1] published in Nature.

Energetic cosmic beams known as jets[2] are seen throughout our universe. They are launched when material – mainly dust and gas – falls in towards any dense central object, such as a neutron star (an extremely dense remnant of a once-massive star) or a black hole[3].

The jets carry away some of the gravitational energy released by the infalling gas, recycling it back into the surroundings on far larger scales.

The most powerful jets in the universe come from the biggest black holes at the centres of galaxies. The energy output of these jets can affect the evolution of an entire galaxy, or even a galaxy cluster. This makes jets a critical, yet intriguing, component of our universe.

Although jets are common, we still don’t fully understand how they are launched. Measuring the jets from a neutron star has now given us valuable information.

Read more: The brightest object in the universe is a black hole that eats a star a day[4]

Jets from stellar corpses

Jets from black holes tend to be bright, and have been well studied. However, the jets from neutron stars are typically much fainter, and much less is known about them.

This presents a problem, since we can learn a lot by comparing the jets launched by different celestial objects. Neutron stars[5] are extremely dense stellar corpses – cosmic cinders the size of a city, yet containing the mass of a star. We can think of them as enormous atomic nuclei, each about 20 kilometres across.

In contrast to black holes, neutron stars have both a solid surface and a magnetic field, and gas falling onto them releases less gravitational energy. All of these properties will have an effect on how their jets are launched, making studies of neutron star jets particularly valuable.

One key clue to how jets are launched comes from their speeds. If we can determine how jet speeds vary with the mass or spin of the neutron star, that would provide a powerful test of theoretical predictions. But it is extremely challenging to measure jet speeds accurately enough for such a test.

Read more: Unexpected find from a neutron star forces a rethink on radio jets[6]

A cosmic speed camera

When we measure speeds on Earth, we time an object between two points. This could be a 100-metre sprinter running down the track, or a point-to-point speed camera tracking a car.

Our team, led by Thomas Russell from the Italian National Institute of Astrophysics[7] in Palermo, conducted a new experiment to do this for neutron star jets.

What has made this measurement so difficult in the past is that jets are steady flows. This means there is no single starting point for our timer. But we were able to identify a short-lived signal at X-ray wavelengths that we could use as our “starting gun”.

Being so dense, neutron stars can “steal” matter from a nearby orbiting companion star. While some of that gas is launched outwards as jets, most of it ends up falling onto the neutron star. As the material piles up, it gets hotter and denser.

When enough material has built up, it triggers a thermonuclear explosion. A runaway nuclear fusion reaction occurs and rapidly spreads to engulf the entire star. The fusion lasts for a few seconds to minutes, causing a short-lived burst of X-rays[8].

One step closer to solving a mystery

We thought this thermonuclear explosion would disrupt the neutron star’s jets. So, we used CSIRO’s Australia Telescope Compact Array[9] to stare at the jets for three days at radio wavelengths to try and catch the disruption. At the same time, we used the European Space Agency’s Integral[10] telescope to look at the X-rays from the system.

To our surprise, we found the jets got brighter after every pulse of X-rays. Instead of disrupting the jets, the thermonuclear explosions seemed to power them up. And this pattern was repeated ten times in one neutron star system, and then again in a second system.

We can explain this surprising result if the X-ray pulse causes gas swirling around the neutron star to fall inwards more quickly. This, in turn, provides more energy and material to divert into the jets.

Most importantly, however, we can use the X-ray burst to indicate the launch time of the jets. We timed how long they took to move outwards to where they became visible at two different radio wavelengths. These start and finish points provided us with our cosmic speed camera.

Interestingly, the jet speed we measured was close to the “escape speed” from a neutron star. On Earth, this escape speed is 11.2 kilometres per second[11] – what rockets need to achieve to break free of Earth’s gravity. For a neutron star, that value is around half the speed of light.

Our work has introduced a new technique for measuring neutron star jet speeds. Our next steps will be to see how the jet speed changes for neutron stars with different masses and rotation rates. That will allow us to directly test theoretical models, taking us one step closer to figuring out how such powerful cosmic jets are launched.

References

  1. ^ new study (www.nature.com)
  2. ^ jets (www.britannica.com)
  3. ^ black hole (science.nasa.gov)
  4. ^ The brightest object in the universe is a black hole that eats a star a day (theconversation.com)
  5. ^ Neutron stars (imagine.gsfc.nasa.gov)
  6. ^ Unexpected find from a neutron star forces a rethink on radio jets (theconversation.com)
  7. ^ Italian National Institute of Astrophysics (www.inaf.it)
  8. ^ burst of X-rays (www.nasa.gov)
  9. ^ Australia Telescope Compact Array (www.csiro.au)
  10. ^ Integral (www.esa.int)
  11. ^ 11.2 kilometres per second (www.britannica.com)

Read more https://theconversation.com/a-cosmic-speed-camera-just-revealed-the-staggering-speed-of-neutron-star-jets-in-a-world-first-226729

The Times Features

Why Staying Safe at Home Is Easier Than You Think

Staying safe at home doesn’t have to be a daunting task. Many people think creating a secure living space is expensive or time-consuming, but that’s far from the truth. By focu...

Lauren’s Journey to a Healthier Life: How Being a Busy Mum and Supportive Wife Helped Her To Lose 51kg with The Lady Shake

For Lauren, the road to better health began with a small and simple but significant decision. As a busy wife and mother, she noticed her husband skipping breakfast and decided ...

How to Manage Debt During Retirement in Australia: Best Practices for Minimising Interest Payments

Managing debt during retirement is a critical step towards ensuring financial stability and peace of mind. Retirees in Australia face unique challenges, such as fixed income st...

hMPV may be spreading in China. Here’s what to know about this virus – and why it’s not cause for alarm

Five years on from the first news of COVID, recent reports[1] of an obscure respiratory virus in China may understandably raise concerns. Chinese authorities first issued warn...

Black Rock is a popular beachside suburb

Black Rock is indeed a popular beachside suburb, located in the southeastern suburbs of Melbourne, Victoria, Australia. It’s known for its stunning beaches, particularly Half M...

What factors affect whether or not a person is approved for a property loan

Several factors determine whether a person is approved for a real estate loan. These factors help lenders assess the borrower’s ability to repay the loan and the risk involved...

Times Magazine

Lessons from the Past: Historical Maritime Disasters and Their Influence on Modern Safety Regulations

Maritime history is filled with tales of bravery, innovation, and, unfortunately, tragedy. These historical disasters serve as stark reminders of the challenges posed by the seas and have driven significant advancements in maritime safety regulat...

What workers really think about workplace AI assistants

Imagine starting your workday with an AI assistant that not only helps you write emails[1] but also tracks your productivity[2], suggests breathing exercises[3], monitors your mood and stress levels[4] and summarises meetings[5]. This is not a f...

Aussies, Clear Out Old Phones –Turn Them into Cash Now!

Still, holding onto that old phone in your drawer? You’re not alone. Upgrading to the latest iPhone is exciting, but figuring out what to do with the old one can be a hassle. The good news? Your old iPhone isn’t just sitting there it’s potential ca...

Rain or Shine: Why Promotional Umbrellas Are a Must-Have for Aussie Brands

In Australia, where the weather can swing from scorching sun to sudden downpours, promotional umbrellas are more than just handy—they’re marketing gold. We specialise in providing wholesale custom umbrellas that combine function with branding power. ...

Why Should WACE Students Get a Tutor?

The Western Australian Certificate of Education (WACE) is completed by thousands of students in West Australia every year. Each year, the pressure increases for students to perform. Student anxiety is at an all time high so students are seeking suppo...

What Are the Risks of Hiring a Private Investigator

I’m a private investigator based in Melbourne, Australia. Being a Melbourne Pi always brings interesting clients throughout Melbourne. Many of these clients always ask me what the risks are of hiring a private investigator.  Legal Risks One of the ...

LayBy Shopping