The Times Australia
The Times World News

.

how bacterial enzymes encoded by unknown genes might help clean up pollution

  • Written by David Ackerley, Professor of Biotechnology, Te Herenga Waka — Victoria University of Wellington
how bacterial enzymes encoded by unknown genes might help clean up pollution

Enzymes are biological nanomachines. They make almost all of life’s chemistry happen, when and where required.

Because of their versatility and power, enzymes can be very useful for biotechnology. Taken outside of living cells, they can be used to synthesise or modify pharmaceuticals or to degrade potential pollutants.

Bacteria contain genes that encode an unfathomable range of enzymes. However, scientists have barely scratched the surface of this potential because 99% of bacteria cannot be grown in laboratory conditions, and hence are largely unstudied.

My team has addressed this by treating the entirety of bacterial DNA in soil – representing thousands of bacterial species – as “genetic software”.

In our new research[1] we show how we can transfer this software to laboratory bacterial strains and then screen for desirable new functions and isolate the enzymes responsible.

Discovering new enzymes

For more than a century, scientists have been collecting soil samples and culturing bacteria, then finding uses for enzymes the bacteria produce. However, when sophisticated DNA-sequencing technologies were developed around the turn of the millennium, it became apparent that standard culturing methods were missing most of the bacteria present.

These technologies showed that a gram of soil, from which typically fewer than 100 different microbial species can be cultured, actually contains many thousands.

The same DNA-sequencing technologies have revealed that the hard-to-grow bacteria contain large numbers of genes whose function is entirely unknown. We are discovering that some of these mystery genes can help us address major problems.

A petri Petri-dish with a a green bacterium growing in the shape of New Zealand, surrounded by _E. coli_ bacteria containing an extra gene that encodes an enzyme to make a blue pigment.
Petri-dish ‘agar art’: green Pseudomonas aeruginosa bacteria in an ocean of E. coli containing an extra gene that encodes an enzyme to make a blue pigment. Mark Calcott, CC BY-SA[2]

Genes are really just passive units of information – pieces of software code within the hard drive of a living cell. But when that information is activated, the outcome is the production of proteins. Most of these are enzymes.

These enzymes then act as nanoscale catalysts for the chemistry that happens in a living cell. Here the software analogy struggles somewhat, as life is biological, not digital - which means it’s noisy and messy.

Thus, an enzyme might perform a primary job that makes an obvious contribution to a cell’s wellbeing. But it might also be capable of doing a dozen other minor things that may or may not have any obvious value.

Those minor “moonlighting” roles are very important for evolution. A function that has no importance today could turn out to be essential in the future, when an entirely new stress arises.

My team is interested in leveraging the evolutionary potential of “unknown unknown” enzymes from soil-dwelling bacteria to solve important problems. To achieve this, we are partnering with Te Herenga Waka’s Living Pā[3] team to discover new enzymes from soil samples, collected on site with their permission.

Read more: Electricity from thin air: an enzyme from bacteria can extract energy from hydrogen in the atmosphere[4]

Using enzymes to tackle problems

One of the unfortunate consequences of evolution is that bacteria frequently contain enzymes that can provide low levels of protection against new antibiotics developed to fight disease. If those antibiotics are overused, or used inappropriately, the bacteria might start to promote the protective function. This is how full-on antibiotic resistance evolves.

This is a very real problem. Every year millions of people die of bacterial infections[5] that used to be treatable, but no longer are. My team has been studying how bacterial resistance to promising new antibiotics can arise[6], so countermeasures can be put in place before it’s too late.

Read more: Will we still have antibiotics in 50 years? We asked 7 global experts[7]

But we are also interested in how unknown enzymes encoded by unknown genes might be directly useful – or evolve to be useful – for applications that protect and preserve the environment. For example, enzymes are being discovered and evolved to enable more effective recycling of plastics[8] or remediate persistent environmental pollutants[9].

Our latest work represents a breakthrough in developing new methods to study the many millions of unknown genes that can be extracted from dirt samples.

Our approach starts by extracting all of the bacterial DNA present in soil and breaking it into bite-sized pieces that contain just one or two genes. We then place them in a special carrier system that allows them to be introduced into a tame laboratory bacterium called Escherichia coli.

Our innovation lies with how we access the information within the newly introduced genes, which is not immediately easy to do. By way of analogy, we all know that Android software usually won’t work on Apple operating systems. Imagine if there were not just a few incompatible operating systems, but many thousands. That’s the problem we face.

We have booted up a commonly used laboratory bacterial strain (E. coli) with new software that would usually be entirely incompatible. But we have developed a universally applicable emulator that allows E. coli to run most of the new software going into it.

We can then screen for individual E. coli bacteria that have gained new properties of interest to us – for example, degradation of target pollutants. Although the enzymes responsible for these new activities might not initially be very efficient, mimicking natural evolutionary processes within the lab environment can improve a low-grade starting activity to an industrially useful level.

Because enzymes are non-living, biodegradable and cannot in any way replicate themselves, they offer safe and controlled solutions to a vast array of problems – if we can find ones able to get the job done.

Read more https://theconversation.com/bioprospecting-the-unknown-how-bacterial-enzymes-encoded-by-unknown-genes-might-help-clean-up-pollution-216080

Times Magazine

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an online presence that reflects your brand, engages your audience, and drives results. For local businesses in the Blue Mountains, a well-designed website a...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

The Times Features

From Garden to Gift: Why Roses Make the Perfect Present

Think back to the last time you gave or received flowers. Chances are, roses were part of the bunch, or maybe they were the whole bunch.   Roses tend to leave an impression. Even ...

Do I have insomnia? 5 reasons why you might not

Even a single night of sleep trouble can feel distressing and lonely. You toss and turn, stare at the ceiling, and wonder how you’ll cope tomorrow. No wonder many people star...

Wedding Photography Trends You Need to Know (Before You Regret Your Album)

Your wedding album should be a timeless keepsake, not something you cringe at years later. Trends may come and go, but choosing the right wedding photography approach ensures your ...

Can you say no to your doctor using an AI scribe?

Doctors’ offices were once private. But increasingly, artificial intelligence (AI) scribes (also known as digital scribes) are listening in. These tools can record and trans...

There’s a new vaccine for pneumococcal disease in Australia. Here’s what to know

The Australian government announced last week there’s a new vaccine[1] for pneumococcal disease on the National Immunisation Program for all children. This vaccine replaces pr...

What Makes a Small Group Tour of Italy So Memorable?

Traveling to Italy is on almost every bucket list. From the rolling hills of Tuscany to the sparkling canals of Venice, the country is filled with sights, flavors, and experiences ...