The Times Australia
The Times World News

.

There's a hidden source of excess nutrients suffocating the Great Barrier Reef. We found it

  • Written by Douglas Tait, Senior Researcher, Southern Cross University
There's a hidden source of excess nutrients suffocating the Great Barrier Reef. We found it

The Great Barrier Reef is one of Australia’s most important environmental and economic assets. It is estimated to contribute A$56 billion per year and supports about 64,000 full-time jobs, according to the Great Barrier Reef Foundation[1]. However, the reef is under increasing pressure.

While much public attention is focused on the impacts of climate change[2] on the Great Barrier Reef and the debate around its endangered status[3], water quality is also crucial to the reef’s health and survival.

Our new study, published today in the journal Environmental Science and Technology[4], found that previously unquantified groundwater inputs are the largest source of new nutrients to the reef. This finding could potentially change how the Great Barrier Reef is managed.

Too much of a good thing

Although nitrogen and phosphorous are essential to support the incredible biodiversity of the reef, too much nutrient[5] can lead to losses of coral biodiversity and coverage. It also increases the abundance of algae and the ability of coral larvae to grow into adult coral, and impacts seagrass coverage and health, which is crucial for fisheries and biodiversity.

Nutrient enrichment can also promote the breeding success of crown-of-thorns starfish[6], whose increasing populations and voracious appetite for corals have decimated parts of the reef in recent decades.

A side by side underwater photo collage of vivid healthy coral and pale murky coral
Pristine coral and coral affected by excess nutrient in the Great Barrier Reef. Ashly McMahon, CC BY-ND[7]

What are the sources of nutrients driving the degradation of the reef? Previous studies have focused on river discharge[8]. According to one estimate, there has been a fourfold increase in riverine nutrient[9] input to the Great Barrier Reef since pre-industrial times.

This past focus on rivers has emphasised reducing surface water nutrient inputs through changing regulations for land-clearing and agriculture, while neglecting other potential sources.

Read more: Floods of nutrients from fertilisers and wastewater trash our rivers. Could offsetting help?[10]

However, the most recent nutrient budget for the Great Barrier Reef found river-derived nutrient inputs can account for only a small proportion of the nutrients[11] necessary to support the abundant life in the reef. This imbalance suggests large, unidentified sources of nutrients to the reef. Not knowing what these are may lead to ineffective management approaches.

With recent government funding of more than $200 million to tackle water quality on the reef[12] which is largely focused on managing river water inputs, it is crucial to make sure other nutrient sources are not overlooked.

A diagram listing nutrient sources to the reef The source of potential groundwater inputs to the Great Barrier Reef. Douglas Tait, CC BY-ND[13]

We found a new nutrient source

Our research team decided to try and track down this missing source of nutrients.

We used natural tracers to track groundwater inputs off Queensland’s coast. This allows us to quantify how much invisible groundwater flows into the Great Barrier Reef, along with the nutrients hitching a ride with this water. Our findings indicate that current efforts to preserve and restore the health of the reef may require a new perspective.

Our team collected data from offshore surveys, rivers and coastal bores along the coastline from south of Rockhampton to north of Cairns. We used the natural groundwater tracer radium to track how much nutrient is transported from the land and shelf sediments via invisible groundwater flows.

Read more: How a disgruntled scientist looking to prove his food wasn't fresh discovered radioactive tracers and won a Nobel Prize 80 years ago[14]

A blue and white ship sailing on a calm ocean The AIMS research vessel, Cape Ferguson. Ashly McMahon, CC BY-ND[15]

We found that groundwater discharge was 10–15 times greater than river inputs. This meant roughly one-third of new nitrogen and two-thirds of phosphorous inputs came via groundwater discharge. This was nearly twice the amount of nutrient delivered by river waters.

Past investigations have revealed that groundwater discharge delivers nutrients and affects water quality in a diverse range of coastal environments[16], including estuaries, coral reefs, coastal embayments and lagoons, intertidal wetlands such as mangroves and saltmarshes, the continental shelf and even the global ocean.

In some cases, this can account for 90% of the nutrient inputs[17] to coastal areas, which has major implications for global biologic production.

Nevertheless, this pathway remains overlooked in most coastal nutrient budgets and water quality models.

A beach early in the morning with people digging into the sand The research team sampling groundwater near the Great Barrier Reef. Ashly McMahon, CC BY-ND[18]

A paradigm shift needed?

Our results suggest the need for a strategic shift in management approaches[19] aimed at safeguarding the Great Barrier Reef from the effects of excess nutrients.

This includes better land management practices to ensure fewer nutrients are entering groundwater aquifers. We can also use ecological (such as seaweed and bivalve aquaculture, enhancing seagrass, oyster reefs, mangroves and salt marsh) and hydrological (increasing flushing where possible) practices at groundwater discharge hotspots to reduce excess nutrients in the water column[20].

The reuse of nutrient-rich groundwater[21] for agriculture also needs to be explored as it represents an untapped and inexpensive nutrient source.

Importantly, unlike river outflow, nutrients in groundwater can be stored underground for decades[22] before being discharged into coastal waters. This means research and strategies to protect the reef need to be long-term. The potential large lag time may lead to significant problems in the coming decades as the nutrients now stored in underground aquifers make their way to coastal waters regardless of changes to current land use practices.

A vivid landscape of colourful corals in an underwater photo Pristine corals on the Great Barrier Reef. Ashly McMahon, CC BY-ND[23]

The understanding and ability to manage the sources of nutrients is pivotal in preserving global coral reef systems.

While we need to reduce the impact of climate change on this fragile ecosystem, we also need to adjust our policies to manage nutrient inputs and safeguard the Great Barrier Reef for generations to come.

Read more: Out of danger because the UN said so? Hardly – the Barrier Reef is still in hot water[24]

References

  1. ^ according to the Great Barrier Reef Foundation (www.barrierreef.org)
  2. ^ impacts of climate change (theconversation.com)
  3. ^ debate around its endangered status (theconversation.com)
  4. ^ Environmental Science and Technology (doi.org)
  5. ^ too much nutrient (www.sciencedirect.com)
  6. ^ crown-of-thorns starfish (link.springer.com)
  7. ^ CC BY-ND (creativecommons.org)
  8. ^ focused on river discharge (www.reefplan.qld.gov.au)
  9. ^ fourfold increase in riverine nutrient (www.sciencedirect.com)
  10. ^ Floods of nutrients from fertilisers and wastewater trash our rivers. Could offsetting help? (theconversation.com)
  11. ^ small proportion of the nutrients (www.sciencedirect.com)
  12. ^ more than $200 million to tackle water quality on the reef (www.barrierreef.org)
  13. ^ CC BY-ND (creativecommons.org)
  14. ^ How a disgruntled scientist looking to prove his food wasn't fresh discovered radioactive tracers and won a Nobel Prize 80 years ago (theconversation.com)
  15. ^ CC BY-ND (creativecommons.org)
  16. ^ diverse range of coastal environments (www.nature.com)
  17. ^ 90% of the nutrient inputs (aslopubs.onlinelibrary.wiley.com)
  18. ^ CC BY-ND (creativecommons.org)
  19. ^ shift in management approaches (niwa.co.nz)
  20. ^ reduce excess nutrients in the water column (www.frontiersin.org)
  21. ^ The reuse of nutrient-rich groundwater (medium.com)
  22. ^ stored underground for decades (www.sciencedirect.com)
  23. ^ CC BY-ND (creativecommons.org)
  24. ^ Out of danger because the UN said so? Hardly – the Barrier Reef is still in hot water (theconversation.com)

Read more https://theconversation.com/theres-a-hidden-source-of-excess-nutrients-suffocating-the-great-barrier-reef-we-found-it-214364

Times Magazine

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Times Features

What Makes Certain Rings or Earrings Timeless Versus Trendy?

Timeless rings and earrings are defined by designs that withstand the test of time, quality craftsmanship, and versatility. Trendy pieces, on the other hand, often stand testimony ...

Italian Street Kitchen: A Nation’s Favourite with Expansion News on Horizon

Successful chef brothers, Enrico and Giulio Marchese, weigh in on their day-to-day at Australian foodie favourite, Italian Street Kitchen - with plans for ‘ambitious expansion’ to ...

What to Expect During a Professional Termite Inspection

Keeping a home safe from termites isn't just about peace of mind—it’s a vital investment in the structure of your property. A professional termite inspection is your first line o...

Booty and the Beasts - The Podcast

Cult TV Show Back with Bite as a Riotous New Podcast  The show that scandalised, shocked and entertained audiences across the country, ‘Beauty and the Beast’, has returned in ...

A Guide to Determining the Right Time for a Switchboard Replacement

At the centre of every property’s electrical system is the switchboard – a component that doesn’t get much attention until problems arise. This essential unit directs electrici...

Après Skrew: Peanut Butter Whiskey Turns Australia’s Winter Parties Upside Down

This August, winter in Australia is about to get a lot nuttier. Skrewball Whiskey, the cult U.S. peanut butter whiskey that’s taken the world by storm, is bringing its bold brand o...