The Times Australia
Fisher and Paykel Appliances
The Times World News

.

If AI image generators are so smart, why do they struggle to write and count?

  • Written by Seyedali Mirjalili, Professor, Director of Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia
If AI image generators are so smart, why do they struggle to write and count?

Generative AI tools such as Midjourney, Stable Diffusion and DALL-E 2 have astounded us with their ability to produce remarkable images in a matter of seconds[1].

Despite their achievements, however, there remains a puzzling disparity between what AI image generators can produce and what we can. For instance, these tools often won’t deliver satisfactory results for seemingly simple tasks such as counting objects and producing accurate text.

If generative AI has reached such unprecedented heights in creative expression, why does it struggle with tasks even a primary school student could complete?

Exploring the underlying reasons helps sheds light on the complex numerical nature of AI, and the nuance of its capabilities.

AI’s limitations with writing

Humans can easily recognise text symbols (such as letters, numbers and characters) written in various different fonts and handwriting. We can also produce text in different contexts, and understand how context can change meaning.

Current AI image generators lack this inherent understanding. They have no true comprehension of what any text symbols mean. These generators are built on artificial neural networks trained on[2] massive amounts of image data, from which they “learn” associations and make predictions.

Combinations of shapes in the training images are associated with various entities. For example, two inward-facing lines that meet might represent the tip of a pencil, or the roof of a house.

But when it comes to text and quantities, the associations must be incredibly accurate, since even minor imperfections are noticeable. Our brains can overlook slight deviations in a pencil’s tip, or a roof – but not as much when it comes to how a word is written, or the number of fingers on a hand.

Read more: Both humans and AI hallucinate — but not in the same way[3]

As far as text-to-image models are concerned, text symbols are just combinations of lines and shapes. Since text comes in so many different styles – and since letters and numbers are used in seemingly endless arrangements – the model often won’t learn how to effectively reproduce text.

AI-generated image produced in response to the prompt ‘KFC logo’. Imagine AI[4]

The main reason for this is insufficient training data. AI image generators require much more training data[5] to accurately represent text and quantities than they do for other tasks.

The tragedy of AI hands

Issues also arise when dealing with smaller objects that require intricate details, such as hands[6].

Two AI-generated images produced in response to the prompt ‘young girl holding up ten fingers, realistic’. Shutterstock AI

In training images, hands are often small, holding objects, or partially obscured by other elements. It becomes challenging for AI to associate the term “hand” with the exact representation of a human hand with five fingers.

Consequently, AI-generated hands often look misshapen[7], have additional or fewer fingers, or have hands partially covered by objects such as sleeves or purses.

We see a similar issue when it comes to quantities. AI models lack a clear understanding of quantities, such as the abstract concept of “four”.

As such, an image generator may respond to a prompt for “four apples” by drawing on learning from myriad images featuring many quantities of apples – and return an output with the incorrect amount.

In other words, the huge diversity of associations within the training data impacts the accuracy of quantities in outputs.

Three AI-generated images produced in response to the prompt ‘5 soda cans on a table’. Shutterstock AI

Will AI ever be able to write and count?

It’s important to remember text-to-image and text-to-video conversion is a relatively new concept in AI. Current generative platforms are “low-resolution” versions of what we can expect in the future.

With advancements being made[8] in training processes and AI technology, future AI image generators will likely be much more capable of producing accurate visualisations.

It’s also worth noting most publicly accessible AI platforms don’t offer the highest level of capability. Generating accurate text and quantities demands highly optimised and tailored networks, so paid subscriptions to more advanced platforms will likely deliver better results.

References

  1. ^ a matter of seconds (www.zdnet.com)
  2. ^ trained on (www.assemblyai.com)
  3. ^ Both humans and AI hallucinate — but not in the same way (theconversation.com)
  4. ^ Imagine AI (www.imagine.art)
  5. ^ more training data (decrypt.co)
  6. ^ such as hands (www.buzzfeednews.com)
  7. ^ often look misshapen (twitter.com)
  8. ^ advancements being made (theconversation.com)

Read more https://theconversation.com/if-ai-image-generators-are-so-smart-why-do-they-struggle-to-write-and-count-208485

Times Magazine

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

The Times Features

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...

Aiper Scuba X1 Robotic Pool Cleaner Review: Powerful Cleaning, Smart Design

If you’re anything like me, the dream is a pool that always looks swimmable without you having to ha...

YepAI Emerges as AI Dark Horse, Launches V3 SuperAgent to Revolutionize E-commerce

November 24, 2025 – YepAI today announced the launch of its V3 SuperAgent, an enhanced AI platf...

What SMEs Should Look For When Choosing a Shared Office in 2026

Small and medium-sized enterprises remain the backbone of Australia’s economy. As of mid-2024, sma...

Anthony Albanese Probably Won’t Lead Labor Into the Next Federal Election — So Who Will?

As Australia edges closer to the next federal election, a quiet but unmistakable shift is rippli...

Top doctors tip into AI medtech capital raise a second time as Aussie start up expands globally

Medow Health AI, an Australian start up developing AI native tools for specialist doctors to  auto...

Record-breaking prize home draw offers Aussies a shot at luxury living

With home ownership slipping out of reach for many Australians, a growing number are snapping up...