The Times Australia
Fisher and Paykel Appliances
The Times World News

.

If AI image generators are so smart, why do they struggle to write and count?

  • Written by Seyedali Mirjalili, Professor, Director of Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia
If AI image generators are so smart, why do they struggle to write and count?

Generative AI tools such as Midjourney, Stable Diffusion and DALL-E 2 have astounded us with their ability to produce remarkable images in a matter of seconds[1].

Despite their achievements, however, there remains a puzzling disparity between what AI image generators can produce and what we can. For instance, these tools often won’t deliver satisfactory results for seemingly simple tasks such as counting objects and producing accurate text.

If generative AI has reached such unprecedented heights in creative expression, why does it struggle with tasks even a primary school student could complete?

Exploring the underlying reasons helps sheds light on the complex numerical nature of AI, and the nuance of its capabilities.

AI’s limitations with writing

Humans can easily recognise text symbols (such as letters, numbers and characters) written in various different fonts and handwriting. We can also produce text in different contexts, and understand how context can change meaning.

Current AI image generators lack this inherent understanding. They have no true comprehension of what any text symbols mean. These generators are built on artificial neural networks trained on[2] massive amounts of image data, from which they “learn” associations and make predictions.

Combinations of shapes in the training images are associated with various entities. For example, two inward-facing lines that meet might represent the tip of a pencil, or the roof of a house.

But when it comes to text and quantities, the associations must be incredibly accurate, since even minor imperfections are noticeable. Our brains can overlook slight deviations in a pencil’s tip, or a roof – but not as much when it comes to how a word is written, or the number of fingers on a hand.

Read more: Both humans and AI hallucinate — but not in the same way[3]

As far as text-to-image models are concerned, text symbols are just combinations of lines and shapes. Since text comes in so many different styles – and since letters and numbers are used in seemingly endless arrangements – the model often won’t learn how to effectively reproduce text.

AI-generated image produced in response to the prompt ‘KFC logo’. Imagine AI[4]

The main reason for this is insufficient training data. AI image generators require much more training data[5] to accurately represent text and quantities than they do for other tasks.

The tragedy of AI hands

Issues also arise when dealing with smaller objects that require intricate details, such as hands[6].

Two AI-generated images produced in response to the prompt ‘young girl holding up ten fingers, realistic’. Shutterstock AI

In training images, hands are often small, holding objects, or partially obscured by other elements. It becomes challenging for AI to associate the term “hand” with the exact representation of a human hand with five fingers.

Consequently, AI-generated hands often look misshapen[7], have additional or fewer fingers, or have hands partially covered by objects such as sleeves or purses.

We see a similar issue when it comes to quantities. AI models lack a clear understanding of quantities, such as the abstract concept of “four”.

As such, an image generator may respond to a prompt for “four apples” by drawing on learning from myriad images featuring many quantities of apples – and return an output with the incorrect amount.

In other words, the huge diversity of associations within the training data impacts the accuracy of quantities in outputs.

Three AI-generated images produced in response to the prompt ‘5 soda cans on a table’. Shutterstock AI

Will AI ever be able to write and count?

It’s important to remember text-to-image and text-to-video conversion is a relatively new concept in AI. Current generative platforms are “low-resolution” versions of what we can expect in the future.

With advancements being made[8] in training processes and AI technology, future AI image generators will likely be much more capable of producing accurate visualisations.

It’s also worth noting most publicly accessible AI platforms don’t offer the highest level of capability. Generating accurate text and quantities demands highly optimised and tailored networks, so paid subscriptions to more advanced platforms will likely deliver better results.

References

  1. ^ a matter of seconds (www.zdnet.com)
  2. ^ trained on (www.assemblyai.com)
  3. ^ Both humans and AI hallucinate — but not in the same way (theconversation.com)
  4. ^ Imagine AI (www.imagine.art)
  5. ^ more training data (decrypt.co)
  6. ^ such as hands (www.buzzfeednews.com)
  7. ^ often look misshapen (twitter.com)
  8. ^ advancements being made (theconversation.com)

Read more https://theconversation.com/if-ai-image-generators-are-so-smart-why-do-they-struggle-to-write-and-count-208485

Times Magazine

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

Kool Car Hire

Turn Your Four-Wheeled Showstopper into Profit (and Stardom) Have you ever found yourself stand...

EV ‘charging deserts’ in regional Australia are slowing the shift to clean transport

If you live in a big city, finding a charger for your electric vehicle (EV) isn’t hard. But driv...

How to Reduce Eye Strain When Using an Extra Screen

Many professionals say two screens are better than one. And they're not wrong! A second screen mak...

Is AI really coming for our jobs and wages? Past predictions of a ‘robot apocalypse’ offer some clues

The robots were taking our jobs – or so we were told over a decade ago. The same warnings are ...

The Times Features

Understanding Kerbside Valuation: A Practical Guide for Property Owners

When it comes to property transactions, not every situation requires a full, detailed valuation. I...

What’s been happening on the Australian stock market today

What moved, why it moved and what to watch going forward. 📉 Market overview The benchmark S&am...

The NDIS shifts almost $27m a year in mental health costs alone, our new study suggests

The National Disability Insurance Scheme (NDIS) was set up in 2013[1] to help Australians with...

Why Australia Is Ditching “Gym Hop Culture” — And Choosing Fitstop Instead

As Australians rethink what fitness actually means going into the new year, a clear shift is emergin...

Everyday Radiance: Bevilles’ Timeless Take on Versatile Jewellery

There’s an undeniable magic in contrast — the way gold catches the light while silver cools it down...

From The Stage to Spotify, Stanhope singer Alyssa Delpopolo Reveals Her Meteoric Rise

When local singer Alyssa Delpopolo was crowned winner of The Voice last week, the cheers were louder...

How healthy are the hundreds of confectionery options and soft drinks

Walk into any big Australian supermarket and the first thing that hits you isn’t the smell of fr...

The Top Six Issues Australians Are Thinking About Today

Australia in 2025 is navigating one of the most unsettled periods in recent memory. Economic pre...

How Net Zero Will Adversely Change How We Live — and Why the Coalition’s Abandonment of That Aspiration Could Be Beneficial

The drive toward net zero emissions by 2050 has become one of the most defining political, socia...