The Times Australia
The Times World News

.
Men's Weekly

.

Using a detector the size of a galaxy, astronomers find strongest evidence yet for gravitational waves from supermassive black hole pairs

  • Written by Daniel Reardon, Postdoctoral researcher in pulsar timing and gravitational waves, Swinburne University of Technology
Using a detector the size of a galaxy, astronomers find strongest evidence yet for gravitational waves from supermassive black hole pairs

When black holes and other enormously massive, dense objects whirl around one another, they send out ripples in space and time called gravitational waves[1]. These waves are one of the few ways we have to study the enigmatic cosmic giants that create them.

Astronomers have observed the high-frequency “chirps” of colliding black holes, but the ultra-low-frequency rumble of supermassive black holes orbiting one another has proven harder to detect. For decades, we have been observing pulsars[2], a type of star that pulses like a lighthouse, in search of the faint rippling of these waves.

Today, pulsar research collaborations around the world – including ours, the Parkes Pulsar Timing Array[3] – announced their strongest evidence yet[4] for the existence of these waves.

What are gravitational waves?

In 1915, German-born physicist Albert Einstein presented a breakthrough insight into the nature of gravity[5]: the general theory of relativity.

The theory describes the Universe as a four-dimensional “fabric” called spacetime that can stretch, squeeze, bend and twist. Massive objects distort this fabric to give rise to gravity.

A curious consequence of the theory is that the motion of massive objects should produce ripples in this fabric, called gravitational waves, which spread at the speed of light.

Read more: Explainer: gravity[6]

It takes an enormous amount of energy to create the tiniest of these ripples. For this reason, Einstein was convinced gravitational waves would never be directly observed.

A century later, researchers from the LIGO and Virgo collaborations witnessed the collision of two black holes[7], which sent a burst of gravitational waves chirping[8] throughout the Universe.

Now, seven years after this discovery, radio astronomers from Australia, China, Europe, India, and North America have found evidence for ultra-low-frequency gravitational waves.

A slow rumbling of gravitational waves

Unlike the sudden burst of gravitational waves reported in 2016, these ultra-low-frequency gravitational waves take years or even decades to oscillate.

They are expected to be produced by pairs of supermassive black holes[9], orbiting at the cores of distant galaxies throughout the Universe. To find these gravitational waves, scientists would need to construct a detector the size of a galaxy.

An illustration showing Earth, pulsars, and gravitational waves.
As gravitational waves warp spacetime around Earth, they distort the arrival times of radio waves from distant pulsars. OzGrav / Swinburne / Carl Knox

Or we can use pulsars, which are already spread across the galaxy, and whose pulses arrive at our telescopes with the regularity of precise clocks.

CSIRO’s Parkes radio telescope, Murriyang[10], has been observing an array of these pulsars for almost two decades. Our Parkes Pulsar Timing Array[11] team is one of several collaborations around the world that have today announced[12] hints of gravitational waves in their latest data sets.

Other collaborations in China (CPTA), Europe and India (EPTA and InPTA), and North America (NANOGrav) see similar signals.

The signal we are searching for is a random “ocean” of gravitational waves produced by all the pairs of supermassive black holes in the Universe.

Observing these waves is not only another triumph of Einstein’s theory, but has important consequences for our understanding of the history of galaxies in the Universe. Supermassive black holes are the engines at the heart of galaxies that feed on gas and regulate star formation.

The signal appears as a low-frequency rumble, common to all pulsars in the array. As the gravitational waves wash over Earth, they affect the apparent rotation rates of the pulsars.

The stretching and squeezing of our galaxy by these waves ultimately changes the distances to the pulsars by just tens of metres. That’s not much when the pulsars are typically about 1,000 light-years away (that’s about 10,000,000,000,000,000,000 metres).

Remarkably, we can observe these shifts in spacetime as nanosecond delays to the pulses, which radio astronomers can track with relative ease because pulsars are such stable natural clocks.

What has been announced?

Because the ultra-low-frequency gravitational waves take years to oscillate, the signal is expected to emerge slowly.

First, radio astronomers observed a common rumble[13] in the pulsars, but its origin was unknown.

Now, the unique fingerprint of gravitational waves is beginning to appear as an attribute of this signal, observed by each of the pulsar timing array collaborations around the world.

Read more: When galaxies collide: the growth of supermassive black holes[14]

This fingerprint describes a particular relationship between the similarity of pulse delays and the separation angle between pulsar pairs on the sky.

The relationship arises because spacetime at Earth is stretched, changing the distances to pulsars in a way that depends on their direction. Pulsars close together in the sky show a more similar signal than pulsars separated at right angles, for example.

CSIRO’s Parkes radio telescope, Murriyang. CSIRO / A. Cherney

The breakthrough has been enabled by improved technology at our observatories. The Parkes Pulsar Timing Array has the longest high-quality data set, thanks to the advanced receiver and signal processing technology installed on Murriyang. This technology has enabled the telescope to discover many of the best pulsars used by collaborations around the globe for the gravitational wave searches.

Earlier results from our collaboration and others showed the signal expected from gravitational waves was missing from pulsar observations[15].

Read more: Where are the missing gravitational waves?[16]

Now, we seem to be seeing the signal with relative clarity. By segmenting our long data set into shorter “time-slices”, we show the signal appears to be growing with time. The underlying cause of this observation is unknown, but it may be that the gravitational waves are behaving unexpectedly.

The new evidence for ultra-low-frequency gravitational waves is exciting for astronomers. To confirm these signatures, the global collaborations will need to combine their data sets, which increases their sensitivity to gravitational waves many-fold.

Efforts to produce this combined data set are now in progress under the International Pulsar Timing Array[17] project, whose members met in Port Douglas in Far North Queensland last week. Future observatories, like the Square Kilometre Array under construction in Australia and South Africa, will turn these studies into a rich source of knowledge about the history of our Universe.

References

  1. ^ gravitational waves (theconversation.com)
  2. ^ pulsars (theconversation.com)
  3. ^ Parkes Pulsar Timing Array (www.atnf.csiro.au)
  4. ^ strongest evidence yet (doi.org)
  5. ^ gravity (theconversation.com)
  6. ^ Explainer: gravity (theconversation.com)
  7. ^ collision of two black holes (theconversation.com)
  8. ^ chirping (theconversation.com)
  9. ^ pairs of supermassive black holes (theconversation.com)
  10. ^ Murriyang (blog.csiro.au)
  11. ^ Parkes Pulsar Timing Array (www.atnf.csiro.au)
  12. ^ today announced (doi.org)
  13. ^ common rumble (doi.org)
  14. ^ When galaxies collide: the growth of supermassive black holes (theconversation.com)
  15. ^ was missing from pulsar observations (theconversation.com)
  16. ^ Where are the missing gravitational waves? (theconversation.com)
  17. ^ International Pulsar Timing Array (ipta4gw.org)

Read more https://theconversation.com/using-a-detector-the-size-of-a-galaxy-astronomers-find-strongest-evidence-yet-for-gravitational-waves-from-supermassive-black-hole-pairs-208484

Times Magazine

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Science Behind Reverse Osmosis and Why It Matters

What is reverse osmosis? Reverse osmosis (RO) is a water purification process that removes contaminants by forcing water through a semi-permeable membrane. This membrane allows only water molecules to pass through while blocking impurities such as...

Foodbank Queensland celebrates local hero for National Volunteer Week

Stephen Carey is a bit bananas.   He splits his time between his insurance broker business, caring for his young family, and volunteering for Foodbank Queensland one day a week. He’s even run the Bridge to Brisbane in a banana suit to raise mon...

Senior of the Year Nominations Open

The Allan Labor Government is encouraging all Victorians to recognise the valuable contributions of older members of our community by nominating them for the 2025 Victorian Senior of the Year Awards.  Minister for Ageing Ingrid Stitt today annou...

CNC Machining Meets Stage Design - Black Swan State Theatre Company & Tommotek

When artistry meets precision engineering, incredible things happen. That’s exactly what unfolded when Tommotek worked alongside the Black Swan State Theatre Company on several of their innovative stage productions. With tight deadlines and intrica...

The Times Features

Running Across Australia: What Really Holds the Body Together?

How William Goodge’s 3,800km run reveals the connection between movement, mindset, and mental resilience As a business owner, I’ve come to realise that the biggest wins rarely com...

Telehealth is Transforming Healthcare Services in Australia

It has traditionally not been easy to access timely healthcare in Australia, particularly for people who live in remote areas. Many of them spend hours on the road just to see a...

Launchd Acquires Huume, Strengthening Creative Firepower Across Talent-Led Marketing

Launchd, a leader in talent, technology and brand partnerships, has announced its acquisition of influencer talent management agency Huume from IZEA. The move comes as the medi...

Vietnam's "Gold Coast" Emerges as Extraordinary Investment Frontier and Australian Inspired Way of Life

$2 Billion super-city in Vung Tau set to replicate Australia's Gold Coast success story A culturally metamorphic development aptly named "Gold Coast" is set to reshape Vietna...

Choosing the Wrong Agent Is the #1 Regret Among Aussie Property Sellers

Selling your home is often one of the largest financial transactions you’ll make, and for many Australians, it’s also one of the most emotional. A new survey of Australian home se...

Travel Insurance for Families: What Does it Cover and Why it’s Essential

Planning a family trip is exciting, but unexpected mishaps can turn your dream vacation into a stressful ordeal. That’s where travel insurance comes in—it’s your safety net when ...