The Times Australia
The Times World News

.

quantum computing can help secure the future of AI systems

  • Written by Muhammad Usman, Principal Research Scientist and Team Leader, CSIRO
quantum computing can help secure the future of AI systems

Artificial intelligence algorithms are quickly becoming a part of everyday life. Many systems that require strong security are either already underpinned by machine learning or soon will be. These systems include facial recognition, banking, military targeting applications, and robots and autonomous vehicles, to name a few.

This raises an important question: how secure are these machine learning algorithms against malicious attacks?

In an article published today[1] in Nature Machine Intelligence, my colleagues at the University of Melbourne and I discuss a potential solution to the vulnerability of machine learning models.

We propose that the integration of quantum computing in these models could yield new algorithms with strong resilience against adversarial attacks.

The dangers of data manipulation attacks

Machine learning algorithms can be remarkably accurate and efficient for many tasks. They are particularly useful for classifying and identifying image features. However, they’re also highly vulnerable to data manipulation attacks, which can pose serious security risks.

Data manipulation attacks – which involve the very subtle manipulation of image data – can be launched in several ways. An attack may be launched by mixing corrupt data into a training dataset used to train an algorithm, leading it to learn things it shouldn’t.

Manipulated data can also be injected during the testing phase (after training is complete), in cases where the AI system continues to train the underlying algorithms while in use.

People can even carry out such attacks from the physical world. Someone could put a sticker on a stop sign to fool a self-driving car’s[2] AI into identifying it as a speed-limit sign. Or, on the front lines, troops might wear uniforms that can fool AI-based drones into identifying them as landscape features.

Read more: AI to Z: all the terms you need to know to keep up in the AI hype age[3]

Either way, the consequences of data manipulation attacks can be severe. For example, if a self-driving car uses a machine learning algorithm that has been compromised, it may incorrectly predict there are no humans on the road – when there are.

In this example you can see an algorithm that correctly identifies humans based on an image input. However, when a few pixels are changed in an adversarial attack, the algorithm can no longer identify the humans. Jan Hendrik Metzen et. al., Author provided[4]

How quantum computing can help

In our article, we describe how integrating quantum computing with machine learning could give rise to secure algorithms called quantum machine learning models.

These algorithms are carefully designed to exploit special quantum properties that would allow them to find specific patterns in image data that aren’t easily manipulated. The result would be resilient algorithms that are safe against even powerful attacks. They also wouldn’t require the expensive “adversarial training[5]” currently used to teach algorithms how to resist such attacks.

Beyond this, quantum machine learning could allow for faster algorithmic training and more accuracy in learning features.

So how would it work?

Today’s classical computers work by storing and processing information as “bits”, or binary digits, the smallest unit of data a computer can process. In classical computers, which follow the laws of classical physics, bits are represented as binary numbers – specifically 0s and 1s.

Quantum computing, on the other hand, follows principles used in quantum physics. Information in quantum computers is stored and processed as qubits (quantum bits) which can exist as 0, 1, or a combination of both at once. A quantum system that exists in multiple states at once is said to be in a superposition state. Quantum computers can be used to design clever algorithms that exploit this property.

However, while there are significant potential benefits in using quantum computing to secure machine learning models, it could also be a double-edged sword.

On one hand, quantum machine learning models will provide critical security for many sensitive applications. On the other, quantum computers could be used to generate powerful adversarial attacks, capable of easily deceiving even state-of-the-art conventional machine learning models.

Moving forward, we’ll need to seriously consider the best ways to protect our systems; an adversary with access to early quantum computers would pose a significant security threat.

Limitations to overcome

The current evidence suggests we’re still some years away from quantum machine learning becoming a reality, due to limitations in the current generation of quantum processors.

Today’s quantum computers are relatively small (with fewer than 500 qubits) and their error rates are high. Errors may arise for several reasons, including imperfect fabrication of qubits, errors in the control circuitry, or loss of information (called “quantum decoherence[6]”) through interaction with the environment.

Still, we’ve seen enormous progress in quantum hardware and software over the past few years. According to recent quantum hardware roadmaps[7], it’s anticipated quantum devices made in coming years will have hundreds to thousands of qubits.

These devices should be able to run powerful quantum machine learning models to help protect a large range of industries that rely on machine learning and AI tools.

Worldwide, governments and private sectors alike are increasing their investment in quantum technologies.

This month the Australian government launched the National Quantum Strategy[8], aimed at growing the nation’s quantum industry and commercialising quantum technologies. According to the CSIRO, Australia’s quantum industry could be worth[9] about A$2.2 billion by 2030.

Read more: Australia has a National Quantum Strategy. What does that mean?[10]

References

  1. ^ published today (www.nature.com)
  2. ^ fool a self-driving car’s (towardsdatascience.com)
  3. ^ AI to Z: all the terms you need to know to keep up in the AI hype age (theconversation.com)
  4. ^ Jan Hendrik Metzen et. al. (arxiv.org)
  5. ^ adversarial training (towardsdatascience.com)
  6. ^ quantum decoherence (en.wikipedia.org)
  7. ^ roadmaps (www.ibm.com)
  8. ^ National Quantum Strategy (www.industry.gov.au)
  9. ^ could be worth (www.csiro.au)
  10. ^ Australia has a National Quantum Strategy. What does that mean? (theconversation.com)

Read more https://theconversation.com/from-self-driving-cars-to-military-surveillance-quantum-computing-can-help-secure-the-future-of-ai-systems-206177

Times Magazine

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Science Behind Reverse Osmosis and Why It Matters

What is reverse osmosis? Reverse osmosis (RO) is a water purification process that removes contaminants by forcing water through a semi-permeable membrane. This membrane allows only water molecules to pass through while blocking impurities such as...

Foodbank Queensland celebrates local hero for National Volunteer Week

Stephen Carey is a bit bananas.   He splits his time between his insurance broker business, caring for his young family, and volunteering for Foodbank Queensland one day a week. He’s even run the Bridge to Brisbane in a banana suit to raise mon...

The Times Features

Metal Roof Replacement Cost Per Square Metre in 2025: A Comprehensive Guide for Australian Homeowners

In recent years, the trend of installing metal roofs has surged across Australia. With their reputation for being both robust and visually appealing, it's easy to understand thei...

Why You’re Always Adjusting Your Bra — and What to Do Instead

Image by freepik It starts with a gentle tug, then a subtle shift, and before you know it, you're adjusting your bra again — in the middle of work, at dinner, even on the couch. I...

How to Tell If Your Eyes Are Working Harder Than They Should Be

Image by freepik Most of us take our vision for granted—until it starts to let us down. Whether it's squinting at your phone, rubbing your eyes at the end of the day, or feeling ...

Ways to Attract Tenants in a Competitive Rental Market

In the kind of rental market we’ve got now, standing out is half the battle. The other half? Actually getting someone to sign that lease. With interest rates doing backflips and ...

Top Tips for Finding the Ideal Block to Build Your Home

There’s something deeply personal and exciting about building your own home. You’re not just choosing paint colours or furniture, you’re creating a space that reflects your lifes...

The Home Buying Process Explained Step by Step

Buying a home is a thrilling milestone, but it can also feel like navigating a maze without a map. With paperwork, finances, and decisions at every turn, understanding the home-b...