The Times Australia
Fisher and Paykel Appliances
The Times World News

.

an enzyme from bacteria can extract energy from hydrogen in the atmosphere

  • Written by Chris Greening, Professor, Microbiology, Monash University
an enzyme from bacteria can extract energy from hydrogen in the atmosphere

It may sound surprising, but when times are tough and there is no other food available, some soil bacteria can consume traces of hydrogen in the air as an energy source.

In fact, bacteria remove a staggering 70 million tonnes of hydrogen yearly from the atmosphere, a process that literally shapes the composition of the air we breathe.

We have isolated an enzyme that enables some bacteria to consume hydrogen and extract energy from it, and found it can produce an electric current directly when exposed to even minute amounts of hydrogen.

As we report in a new paper in Nature[1], the enzyme may have considerable potential to power small, sustainable air-powered devices in future.

Bacterial genes contain the secret for turning air into electricity

Prompted by this discovery, we analysed the genetic code of a soil bacterium called Mycobacterium smegmatis, which consumes hydrogen from air.

Written into these genes is the blueprint for producing the molecular machine responsible for consuming hydrogen and converting it into energy for the bacterium. This machine is an enzyme called a “hydrogenase”, and we named it Huc for short.

Hydrogen is the simplest molecule, made of two positively charged protons held together by a bond formed by two negatively charged electrons. Huc breaks this bond, the protons part ways, and the electrons are released.

The Huc enzyme was isolated from the bacterium M. smegmatis. Rhys Grinter

In the bacteria, these free electrons then flow into a complex circuit called the “electron transport chain”, and are harnessed to provide the cell with energy.

Flowing electrons are what electricity is made of, meaning Huc directly converts hydrogen into electrical current.

Hydrogen represents only 0.00005% of the atmosphere. Consuming this gas at these low concentrations is a formidable challenge, which no known catalyst can achieve. Furthermore, oxygen, which is abundant in the atmosphere, poisons the activity of most hydrogen-consuming catalysts.

Isolating the enzyme that allows bacteria to live on air

We wanted to know how Huc overcomes these challenges, so we set out to isolate it from M. smegmatis cells.

The process for doing this was complicated. We first modified the genes in M. smegmatis that allow the bacteria to make this enzyme. In doing this we added a specific chemical sequence to Huc, which allowed us to isolate it from M. smegmatis cells.

Read more: Antarctic bacteria live on air and make their own water using hydrogen as fuel[2]

Getting a good look at Huc wasn’t easy. It took several years and quite a few experimental dead ends before we finally isolated a high-quality sample of the ingenious enzyme.

However, the hard work was worth it, as the Huc we eventually produced is very stable. It withstands temperatures from 80℃ down to –80℃ without activity loss.

The molecular blueprint for extracting hydrogen from air

With Huc isolated, we set about studying it in earnest, to discover what exactly the enzyme is capable of. How can it turn the hydrogen in the air into a sustainable source of electricity?

Remarkably, we found that even when isolated from the bacteria, Huc can consume hydrogen at concentrations far lower even than the tiny traces in the air. In fact, Huc still consumed whiffs of hydrogen too faint to be detected by our gas chromatograph, a highly sensitive instrument we use to measure gas concentrations.

We also found Huc is entirely uninhibited by oxygen, a property not seen in other hydrogen-consuming catalysts.

A map of the atomic structure of the Huc enzyme. Rhys Grinter, CC BY-NC[3]

To assess its ability to convert hydrogen to electricity, we used a technique called electrochemistry. This showed Huc can convert minute concentrations of hydrogen in air directly into electricity, which can power an electrical circuit. This is a remarkable and unprecedented achievement for a hydrogen-consuming catalyst.

We used several cutting-edge methods to study how Huc does this at the molecular level. These included advanced microscopy (cryogenic electron microscopy) and spectroscopy to determine its atomic structure and electrical pathways, pushing boundaries to produce the most highly resolved enzyme structure yet reported by this method.

Enzymes could use air to power the devices of tomorrow

It’s early days for this research, and several technical challenges need to be overcome to realise the potential of Huc.

For one thing, we will need to significantly increase the scale of Huc production. In the lab we produce Huc in milligram quantities, but we want to scale this up to grams and ultimately kilograms.

However, our work demonstrates that Huc functions like a “natural battery” producing a sustained electrical current from air or added hydrogen.

As a result, Huc has considerable potential in developing small, sustainable air-powered devices as an alternative to solar power.

The amount of energy provided by hydrogen in the air would be small, but likely sufficient to power a biometric monitor, clock, LED globe or simple computer. With more hydrogen, Huc produces more electricity and could potentially power larger devices.

An artist’s rendering of Huc consuming hydrogen from air. Alina Kurokhtina

Another application would be the development of Huc-based bioelectric sensors for detecting hydrogen, which could be incredibly sensitive. Huc could be invaluable for detecting leaks in the infrastructure of our burgeoning hydrogen economy or in a medical setting.

In short, this research shows how a fundamental discovery about how bacteria in soils feed themselves can lead to a reimagining of the chemistry of life. Ultimately it may also lead to the development of technologies for the future.

References

  1. ^ a new paper in Nature (www.nature.com)
  2. ^ Antarctic bacteria live on air and make their own water using hydrogen as fuel (theconversation.com)
  3. ^ CC BY-NC (creativecommons.org)

Read more https://theconversation.com/electricity-from-thin-air-an-enzyme-from-bacteria-can-extract-energy-from-hydrogen-in-the-atmosphere-200432

Times Magazine

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

The Times Features

Here’s what new debt-to-income home loan caps mean for banks and borrowers

For the first time ever, the Australian banking regulator has announced it will impose new debt-...

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...

Aiper Scuba X1 Robotic Pool Cleaner Review: Powerful Cleaning, Smart Design

If you’re anything like me, the dream is a pool that always looks swimmable without you having to ha...

YepAI Emerges as AI Dark Horse, Launches V3 SuperAgent to Revolutionize E-commerce

November 24, 2025 – YepAI today announced the launch of its V3 SuperAgent, an enhanced AI platf...

What SMEs Should Look For When Choosing a Shared Office in 2026

Small and medium-sized enterprises remain the backbone of Australia’s economy. As of mid-2024, sma...

Anthony Albanese Probably Won’t Lead Labor Into the Next Federal Election — So Who Will?

As Australia edges closer to the next federal election, a quiet but unmistakable shift is rippli...

Top doctors tip into AI medtech capital raise a second time as Aussie start up expands globally

Medow Health AI, an Australian start up developing AI native tools for specialist doctors to  auto...