The Times Australia
The Times World News

.
The Times Real Estate

.

an enzyme from bacteria can extract energy from hydrogen in the atmosphere

  • Written by Chris Greening, Professor, Microbiology, Monash University
an enzyme from bacteria can extract energy from hydrogen in the atmosphere

It may sound surprising, but when times are tough and there is no other food available, some soil bacteria can consume traces of hydrogen in the air as an energy source.

In fact, bacteria remove a staggering 70 million tonnes of hydrogen yearly from the atmosphere, a process that literally shapes the composition of the air we breathe.

We have isolated an enzyme that enables some bacteria to consume hydrogen and extract energy from it, and found it can produce an electric current directly when exposed to even minute amounts of hydrogen.

As we report in a new paper in Nature[1], the enzyme may have considerable potential to power small, sustainable air-powered devices in future.

Bacterial genes contain the secret for turning air into electricity

Prompted by this discovery, we analysed the genetic code of a soil bacterium called Mycobacterium smegmatis, which consumes hydrogen from air.

Written into these genes is the blueprint for producing the molecular machine responsible for consuming hydrogen and converting it into energy for the bacterium. This machine is an enzyme called a “hydrogenase”, and we named it Huc for short.

Hydrogen is the simplest molecule, made of two positively charged protons held together by a bond formed by two negatively charged electrons. Huc breaks this bond, the protons part ways, and the electrons are released.

The Huc enzyme was isolated from the bacterium M. smegmatis. Rhys Grinter

In the bacteria, these free electrons then flow into a complex circuit called the “electron transport chain”, and are harnessed to provide the cell with energy.

Flowing electrons are what electricity is made of, meaning Huc directly converts hydrogen into electrical current.

Hydrogen represents only 0.00005% of the atmosphere. Consuming this gas at these low concentrations is a formidable challenge, which no known catalyst can achieve. Furthermore, oxygen, which is abundant in the atmosphere, poisons the activity of most hydrogen-consuming catalysts.

Isolating the enzyme that allows bacteria to live on air

We wanted to know how Huc overcomes these challenges, so we set out to isolate it from M. smegmatis cells.

The process for doing this was complicated. We first modified the genes in M. smegmatis that allow the bacteria to make this enzyme. In doing this we added a specific chemical sequence to Huc, which allowed us to isolate it from M. smegmatis cells.

Read more: Antarctic bacteria live on air and make their own water using hydrogen as fuel[2]

Getting a good look at Huc wasn’t easy. It took several years and quite a few experimental dead ends before we finally isolated a high-quality sample of the ingenious enzyme.

However, the hard work was worth it, as the Huc we eventually produced is very stable. It withstands temperatures from 80℃ down to –80℃ without activity loss.

The molecular blueprint for extracting hydrogen from air

With Huc isolated, we set about studying it in earnest, to discover what exactly the enzyme is capable of. How can it turn the hydrogen in the air into a sustainable source of electricity?

Remarkably, we found that even when isolated from the bacteria, Huc can consume hydrogen at concentrations far lower even than the tiny traces in the air. In fact, Huc still consumed whiffs of hydrogen too faint to be detected by our gas chromatograph, a highly sensitive instrument we use to measure gas concentrations.

We also found Huc is entirely uninhibited by oxygen, a property not seen in other hydrogen-consuming catalysts.

A map of the atomic structure of the Huc enzyme. Rhys Grinter, CC BY-NC[3]

To assess its ability to convert hydrogen to electricity, we used a technique called electrochemistry. This showed Huc can convert minute concentrations of hydrogen in air directly into electricity, which can power an electrical circuit. This is a remarkable and unprecedented achievement for a hydrogen-consuming catalyst.

We used several cutting-edge methods to study how Huc does this at the molecular level. These included advanced microscopy (cryogenic electron microscopy) and spectroscopy to determine its atomic structure and electrical pathways, pushing boundaries to produce the most highly resolved enzyme structure yet reported by this method.

Enzymes could use air to power the devices of tomorrow

It’s early days for this research, and several technical challenges need to be overcome to realise the potential of Huc.

For one thing, we will need to significantly increase the scale of Huc production. In the lab we produce Huc in milligram quantities, but we want to scale this up to grams and ultimately kilograms.

However, our work demonstrates that Huc functions like a “natural battery” producing a sustained electrical current from air or added hydrogen.

As a result, Huc has considerable potential in developing small, sustainable air-powered devices as an alternative to solar power.

The amount of energy provided by hydrogen in the air would be small, but likely sufficient to power a biometric monitor, clock, LED globe or simple computer. With more hydrogen, Huc produces more electricity and could potentially power larger devices.

An artist’s rendering of Huc consuming hydrogen from air. Alina Kurokhtina

Another application would be the development of Huc-based bioelectric sensors for detecting hydrogen, which could be incredibly sensitive. Huc could be invaluable for detecting leaks in the infrastructure of our burgeoning hydrogen economy or in a medical setting.

In short, this research shows how a fundamental discovery about how bacteria in soils feed themselves can lead to a reimagining of the chemistry of life. Ultimately it may also lead to the development of technologies for the future.

References

  1. ^ a new paper in Nature (www.nature.com)
  2. ^ Antarctic bacteria live on air and make their own water using hydrogen as fuel (theconversation.com)
  3. ^ CC BY-NC (creativecommons.org)

Read more https://theconversation.com/electricity-from-thin-air-an-enzyme-from-bacteria-can-extract-energy-from-hydrogen-in-the-atmosphere-200432

The Times Features

Itinerary to Maximize Your Two-Week Adventure in Vietnam and Cambodia

Two weeks may not seem like much, but it’s just the right time for travelers to explore the best of Vietnam and Cambodia. From the bustling streets of Hanoi to the magnificent te...

How to Protect Your Garden Trees from Wind Damage in Australia

In Australia's expansive landscape, garden trees hold noteworthy significance. They not only enhance the aesthetic appeal of our homes but also play an integral role in the local...

Brisbane Homeowners Warned: Non-Compliant Flexible Hoses Pose High Flood Risk

As a homeowner in Brisbane, when you think of the potential for flood damage to your home, you probably think of weather events. But you should know that there may be a tickin...

Argan Oil-Infused Moroccanoil Shampoo: Nourish and Revitalize Your Hair

Are you ready to transform your hair from dull and lifeless to vibrant and full of life? Look no further than the luxurious embrace of Argan Oil-Infused Moroccanoil Shampoo! In a...

Building A Strong Foundation For Any Structure

Building a home or commercial building can be very exciting. The possibilities are endless and the future is interesting. You can always change aspects of the building to meet the ...

The Role of a Family Dentist: Why Every Household Needs One

source A family dentist isn’t like your regular dentist who may specialise in a particular age group and whom you visit only when something goes wrong. A family dentist takes proa...

Times Magazine

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

How AI-Driven SEO Enhancements Can Improve Headless CMS Content Visibility

Whereas SEO (search engine optimization) is critical in the digital landscape for making connections to content, much of it is still done manually keyword research, metatags, final tweaks at publication requiring a human element that takes extensiv...

Crypto Expert John Fenga Reveals How Blockchain is Revolutionising Charity

One of the most persistent challenges in the charity sector is trust. Donors often wonder whether their contributions are being used effectively or if overhead costs consume a significant portion. Traditional fundraising methods can be opaque, with...

Navigating Parenting Arrangements in Australia: A Legal Guide for Parents

Understanding Parenting Arrangements in Australia. Child custody disputes are often one of the most emotionally charged aspects of separation or divorce. Parents naturally want what is best for their children, but the legal process of determining ...

Blocky Adventures: A Minecraft Movie Celebration for Your Wrist

The Minecraft movie is almost here—and it’s time to get excited! With the film set to hit theaters on April 4, 2025, fans have a brand-new reason to celebrate. To honor the upcoming blockbuster, watchfaces.co has released a special Minecraft-inspir...

The Ultimate Guide to Apple Watch Faces & Trending Wallpapers

In today’s digital world, personalization is everything. Your smartwatch isn’t just a timepiece—it’s an extension of your style. Thanks to innovative third-party developers, customizing your Apple Watch has reached new heights with stunning designs...

LayBy Shopping