The Times Australia
The Times World News

.

Device transmits radio waves with almost no power – without violating the laws of physics

  • Written by Joshua R. Smith, Professor of Electrical and Computer Engineering and of Computer Science and Engineering, University of Washington
Device transmits radio waves with almost no power – without violating the laws of physics

A new ultra-low-power method of communication at first glance seems to violate the laws of physics. It is possible to wirelessly transmit information simply by opening and closing a switch that connects a resistor to an antenna. No need to send power to the antenna.

Our system, combined with techniques for harvesting energy from the environment[1], could lead to all manner of devices that transmit data, including tiny sensors and implanted medical devices, without needing batteries or other power sources. These include sensors for smart agriculture[2], electronics implanted in the body[3] that never need battery changes, better contactless credit cards[4] and maybe even new ways for satellites[5] to communicate.

Apart from the energy needed to flip the switch, no other energy is needed to transmit the information. In our case, the switch is a transistor, an electrically controlled switch with no moving parts that consumes a minuscule amount of power.

In the simplest form of ordinary radio, a switch connects and disconnects a strong electrical signal source – perhaps an oscillator that produces a sine wave fluctuating 2 billion times per second – to the transmit antenna[6]. When the signal source is connected, the antenna produces a radio wave, denoting a 1. When the switch is disconnected, there is no radio wave, indicating a 0.

What we showed is that a powered signal source is not needed. Instead, random thermal noise, present in all electrically conductive materials because of the heat-driven motion of electrons, can take the place of the signal driving the antenna.

No free lunch

We are electrical engineers[7] who research wireless systems[8]. During the peer review of our paper[9] about this research, published recently in Proceedings of the National Academy of Sciences, reviewers asked us to explain why the method did not violate the second law of thermodynamics[10], the main law of physics that explains why perpetual motion machines[11] are not possible.

Perpetual motion machines are theoretical machines that can work indefinitely without requiring energy from any external source. The reviewers worried that if it were possible to send and receive information with no powered components, and with both the transmitter and receiver at the same temperature, that would mean that you could create a perpetual motion machine. Because this is impossible, it would imply that there was something wrong with our work or our understanding of it.

A graphic in the top half showing a horizontal cylinder on the left with a pipe extending to the right with a 90-degree bend upward connecting to an upside-down triangle with pairs of curved lines on either side, and in the bottom half the same but disconnected
Electrons that naturally move around inside a room-temperature resistor affect electrons in a connected antenna, which causes the antenna to generate radio waves. Connecting and disconnecting the antenna produces the ones and zeros of a binary signal. Zerina Kapetanovic, CC BY-ND[12]

One way the second law can be stated is that heat will flow spontaneously only from hotter objects to colder objects. The wireless signals from our transmitter transport heat. If there were a spontaneous flow of signal from the transmitter to the receiver in the absence of a temperature difference between the two, you could harvest that flow to get free energy, in violation of the second law.

The resolution of this seeming paradox is that the receiver in our system is powered and acts like a refrigerator. The signal-carrying electrons on the receive side are effectively kept cold by the powered amplifier, similar to how a refrigerator keeps its interior cold by continuously pumping heat out. The transmitter consumes almost no power, but the receiver consumes substantial power, up to 2 watts. This is similar to receivers in other ultra-low-power communications systems. Nearly all of the power consumption happens at a base station that does not have constraints on energy use.

A simpler approach

Many researchers worldwide have been exploring related passive communication methods, known as backscatter[13]. A backscatter data transmitter looks very similar to our data transmitter device. The difference is that in a backscatter communication system, in addition to the data transmitter and the data receiver, there is a third component that generates a radio wave. The switching performed by the data transmitter has the effect of reflecting that radio wave, which is then picked up at the receiver.

An example of backscatter unpowered wireless communications.

A backscatter device[14] has the same energy efficiency as our system, but the backscatter setup is much more complex, since a signal-generating component[15] is needed. However, our system has lower data rate and range than either backscatter radios or conventional radios.

What’s next

One area for future work is to improve our system’s data rate and range, and to test it in applications such as implanted devices. For implanted devices, an advantage of our new method is that there is no need to expose the patient to a strong external radio signal, which can cause tissue heating. Even more exciting, we believe that related ideas could enable other new forms of communication in which other natural signal sources, such as thermal noise from biological tissue or other electronic components, can be modulated.

Finally, this work may lead to new connections between the study of heat (thermodynamics) and the study of communication (information theory). These fields are often viewed as analogous, but this work suggests some more literal connections between them.

References

  1. ^ harvesting energy from the environment (doi.org)
  2. ^ smart agriculture (www.usenix.org)
  3. ^ electronics implanted in the body (doi.org)
  4. ^ contactless credit cards (doi.org)
  5. ^ satellites (www.nasa.gov)
  6. ^ transmit antenna (academy.wedio.com)
  7. ^ electrical engineers (scholar.google.com)
  8. ^ research wireless systems (scholar.google.com)
  9. ^ our paper (doi.org)
  10. ^ second law of thermodynamics (www.semanticscholar.org)
  11. ^ perpetual motion machines (engineering.mit.edu)
  12. ^ CC BY-ND (creativecommons.org)
  13. ^ backscatter (doi.org)
  14. ^ backscatter device (doi.org)
  15. ^ signal-generating component (www.atlasrfidstore.com)

Read more https://theconversation.com/device-transmits-radio-waves-with-almost-no-power-without-violating-the-laws-of-physics-196271

Times Magazine

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Times Features

Distressed by all the bad news? Here’s how to stay informed but still look after yourself

If you’re feeling like the news is particularly bad at the moment, you’re not alone. But many of us can’t look away – and don’t want to. Engaging with news can help us make ...

The Role of Your GP in Creating a Chronic Disease Management Plan That Works

Living with a long-term condition, whether that is diabetes, asthma, arthritis or heart disease, means making hundreds of small decisions every day. You plan your diet against m...

Troubleshooting Flickering Lights: A Comprehensive Guide for Homeowners

Image by rawpixel.com on Freepik Effectively addressing flickering lights in your home is more than just a matter of convenience; it's a pivotal aspect of both home safety and en...

My shins hurt after running. Could it be shin splints?

If you’ve started running for the first time, started again after a break, or your workout is more intense, you might have felt it. A dull, nagging ache down your shins after...

Metal Roof Replacement Cost Per Square Metre in 2025: A Comprehensive Guide for Australian Homeowners

In recent years, the trend of installing metal roofs has surged across Australia. With their reputation for being both robust and visually appealing, it's easy to understand thei...

Why You’re Always Adjusting Your Bra — and What to Do Instead

Image by freepik It starts with a gentle tug, then a subtle shift, and before you know it, you're adjusting your bra again — in the middle of work, at dinner, even on the couch. I...