The Times Australia
The Times World News

.
The Times Real Estate

.

Device transmits radio waves with almost no power – without violating the laws of physics

  • Written by Joshua R. Smith, Professor of Electrical and Computer Engineering and of Computer Science and Engineering, University of Washington
Device transmits radio waves with almost no power – without violating the laws of physics

A new ultra-low-power method of communication at first glance seems to violate the laws of physics. It is possible to wirelessly transmit information simply by opening and closing a switch that connects a resistor to an antenna. No need to send power to the antenna.

Our system, combined with techniques for harvesting energy from the environment[1], could lead to all manner of devices that transmit data, including tiny sensors and implanted medical devices, without needing batteries or other power sources. These include sensors for smart agriculture[2], electronics implanted in the body[3] that never need battery changes, better contactless credit cards[4] and maybe even new ways for satellites[5] to communicate.

Apart from the energy needed to flip the switch, no other energy is needed to transmit the information. In our case, the switch is a transistor, an electrically controlled switch with no moving parts that consumes a minuscule amount of power.

In the simplest form of ordinary radio, a switch connects and disconnects a strong electrical signal source – perhaps an oscillator that produces a sine wave fluctuating 2 billion times per second – to the transmit antenna[6]. When the signal source is connected, the antenna produces a radio wave, denoting a 1. When the switch is disconnected, there is no radio wave, indicating a 0.

What we showed is that a powered signal source is not needed. Instead, random thermal noise, present in all electrically conductive materials because of the heat-driven motion of electrons, can take the place of the signal driving the antenna.

No free lunch

We are electrical engineers[7] who research wireless systems[8]. During the peer review of our paper[9] about this research, published recently in Proceedings of the National Academy of Sciences, reviewers asked us to explain why the method did not violate the second law of thermodynamics[10], the main law of physics that explains why perpetual motion machines[11] are not possible.

Perpetual motion machines are theoretical machines that can work indefinitely without requiring energy from any external source. The reviewers worried that if it were possible to send and receive information with no powered components, and with both the transmitter and receiver at the same temperature, that would mean that you could create a perpetual motion machine. Because this is impossible, it would imply that there was something wrong with our work or our understanding of it.

A graphic in the top half showing a horizontal cylinder on the left with a pipe extending to the right with a 90-degree bend upward connecting to an upside-down triangle with pairs of curved lines on either side, and in the bottom half the same but disconnected
Electrons that naturally move around inside a room-temperature resistor affect electrons in a connected antenna, which causes the antenna to generate radio waves. Connecting and disconnecting the antenna produces the ones and zeros of a binary signal. Zerina Kapetanovic, CC BY-ND[12]

One way the second law can be stated is that heat will flow spontaneously only from hotter objects to colder objects. The wireless signals from our transmitter transport heat. If there were a spontaneous flow of signal from the transmitter to the receiver in the absence of a temperature difference between the two, you could harvest that flow to get free energy, in violation of the second law.

The resolution of this seeming paradox is that the receiver in our system is powered and acts like a refrigerator. The signal-carrying electrons on the receive side are effectively kept cold by the powered amplifier, similar to how a refrigerator keeps its interior cold by continuously pumping heat out. The transmitter consumes almost no power, but the receiver consumes substantial power, up to 2 watts. This is similar to receivers in other ultra-low-power communications systems. Nearly all of the power consumption happens at a base station that does not have constraints on energy use.

A simpler approach

Many researchers worldwide have been exploring related passive communication methods, known as backscatter[13]. A backscatter data transmitter looks very similar to our data transmitter device. The difference is that in a backscatter communication system, in addition to the data transmitter and the data receiver, there is a third component that generates a radio wave. The switching performed by the data transmitter has the effect of reflecting that radio wave, which is then picked up at the receiver.

An example of backscatter unpowered wireless communications.

A backscatter device[14] has the same energy efficiency as our system, but the backscatter setup is much more complex, since a signal-generating component[15] is needed. However, our system has lower data rate and range than either backscatter radios or conventional radios.

What’s next

One area for future work is to improve our system’s data rate and range, and to test it in applications such as implanted devices. For implanted devices, an advantage of our new method is that there is no need to expose the patient to a strong external radio signal, which can cause tissue heating. Even more exciting, we believe that related ideas could enable other new forms of communication in which other natural signal sources, such as thermal noise from biological tissue or other electronic components, can be modulated.

Finally, this work may lead to new connections between the study of heat (thermodynamics) and the study of communication (information theory). These fields are often viewed as analogous, but this work suggests some more literal connections between them.

References

  1. ^ harvesting energy from the environment (doi.org)
  2. ^ smart agriculture (www.usenix.org)
  3. ^ electronics implanted in the body (doi.org)
  4. ^ contactless credit cards (doi.org)
  5. ^ satellites (www.nasa.gov)
  6. ^ transmit antenna (academy.wedio.com)
  7. ^ electrical engineers (scholar.google.com)
  8. ^ research wireless systems (scholar.google.com)
  9. ^ our paper (doi.org)
  10. ^ second law of thermodynamics (www.semanticscholar.org)
  11. ^ perpetual motion machines (engineering.mit.edu)
  12. ^ CC BY-ND (creativecommons.org)
  13. ^ backscatter (doi.org)
  14. ^ backscatter device (doi.org)
  15. ^ signal-generating component (www.atlasrfidstore.com)

Read more https://theconversation.com/device-transmits-radio-waves-with-almost-no-power-without-violating-the-laws-of-physics-196271

The Times Features

Why Regional Small Businesses in Bendigo Deserve Better Access to Finance in 2025

In the heart of regional Victoria, Bendigo has long stood as a beacon of innovation, resilience and community spirit. As we step further into 2025, the importance of nurturing sm...

Is It Time for a Deep Cleaning? Signs You Shouldn’t Ignore

Most people know they should visit the dentist for a regular check-up and cleaning every six months. But sometimes, a standard cleaning isn’t enough. When plaque and tartar build...

The Hidden Meaning Behind Popular Engagement Ring Cuts

When it comes to engagement rings, the cut of the diamond is not just about aesthetics. Each shape carries its own symbolism and significance, making it an important decision for...

Annual Health Exams in the Office: How They Can Reduce Sick Days and Healthcare Costs

Regular health check-ups, especially annual health exams in the office, can significantly impact the overall well-being of your workforce. A proactive approach to employee health...

Best Deals on Home Furniture Online

Key Highlights Discover the best deals on high-quality outdoor furniture online. Transform your outdoor space into a stylish and comfortable oasis. Explore a wide range of d...

Discover the Best Women's Jumpers for Every Season

Key Highlights Explore lightweight jumpers for spring and summer, ensuring breathability and ease. Wrap up warm with cozy wool jumpers for the chilly autumn and winter season...

Times Magazine

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

LayBy Shopping