The Times Australia
The Times World News

.
The Times Real Estate

.

I spent a year squeezing leaves to measure their water content. Here's what I learned

  • Written by Tomás I. Fuenzalida, Postdoctoral Fellow, Research School of Biology, Australian National University
I spent a year squeezing leaves to measure their water content. Here's what I learned

How do you tell if your plants need water? Recently, I asked this question of a group of about 40 biologists at the Australian National University.

Most of them said they would stick their fingers into the soil. If you want to be more scientific about it, most horticulturalists would argue it is best to weigh the pot to determine how much water it contains.

I took a different view. After building special tools to measure the “pulse” of plants[1], I am more inclined to feel the leaves.

Not only can touch provide a new way to follow the flow of water through plant cells, it may also deliver new possibilities for plant monitoring and care.

The rhythm of plants

Plants have a natural rhythm, like a very slow heartbeat, caused by changing water pressure inside their cells.

Plants only beat around once a day, dehydrating during the day and rehydrating during the night. This process is too slow to watch for all but the most patient observers.

The pressure inside plant cells is called “turgor” and is usually between five and 20 atmospheres (up to 10 times the pressure inside a car tyre!). But while this pressure is large, plant cells are only a fraction of a millimetre in size.

For this reason, measuring turgor pressure has been traditionally been difficult and only done in lab settings. Put simply, we do not have a plug-and-play method to monitor the beating of plants.

Squeezing leaves

Measuring plant water status is pretty important. On a global scale, more water flows through plants than through rivers[2], and a great part of this flux is regulated by changes in leaf turgor pressure.

Similarly, agriculture uses about 70% of all the water managed by humans[3], and many forests around the world are succumbing to drought[4]. It is a key time to study the beating of plants. But where to start?

While doing my PhD studying water movement in plants, I was trying to find a simple way to measure turgor pressure and water content.

Although turgor is a property of single cells, I thought I could monitor a group of cells by carefully squeezing a leaf.

My ideas were simple. Leaves are thicker when they contain more water, so I could monitor the water content by measuring the thickness of the leaf, which I would do by squeezing it with a constant amount of force.

And to monitor the water pressure inside a leaf’s cells, I could measure the force exerted by the leaf when constrained to a given thickness.

As it turned out, these two ideas were not new – only new to me, and perhaps new to plant science. Materials scientists use tests like these all the time: a constant-force test is called a creep experiment, while a constant-thickness test is called a stress relaxation experiment.

How it works

A year of tinkering and thinking about this problem allowed me to test my ideas in a very simple way. I bought a micrometer (a workshop tool used to measure distances very accurately), coupled it with a motor, a force sensor and some computer controls, and devoted myself to squeezing leaves.

Preliminary tests worked well, and then I couldn’t stop doing it!

Within the next six months, I had replaced the last chapter of my PhD with this serendipitous project. Colleagues and I successfully validated and published[5] this simple method to monitor plant water status.

In the figure below, you can see the changes in the leaf thickness and turgidity of a grey mangrove (Aviennia marina) measured under changing light conditions.

Monitoring the beating of plants is possible using a simple device that squeezes leaves with a constant force (green) or with a constant thickness (blue). The resulting thickness and pressure are related to water content and turgor pressure.

Touching plants

Measuring the beating of plants is important, but this is not the only exciting aspect of this project.

More broadly, touch-based measurements could uncover a new wealth of information about plant life. This venture may help us understand climate, save water, and hopefully help us in addressing “plant blindness[6]”.

Plants are very adaptable organisms. Much of their adaptability comes from the ability to modify their body plan to suit different conditions.

Read more: Botanists are disappearing – just when the world needs them most[7]

Being modular organisms made up of a collection of different cells, plants often modify the structure of cells and tissues, the strength of their walls, and the concentration of water-retaining compounds inside the cells. All of these properties, like turgor, are difficult to measure.

Touch provides scientists with a simple tool to study these mechanical properties of plant tissues.

A simple robotic system that could stay on a tree and continuously “feel” how the properties of its leaves (and stems, fruits and roots) change over time would have vast applications in research and industry.

Read more https://theconversation.com/i-spent-a-year-squeezing-leaves-to-measure-their-water-content-heres-what-i-learned-187460

The Times Features

48 Hours in Hobart: The Ultimate Weekend Itinerary

Nestled between the towering Mount Wellington and the sparkling waters of the Derwent River, Hobart is a charming city that offers an intriguing blend of natural beauty, rich histo...

Lunchtime Facelifts: Quick & Effective Procedures for Busy Professionals

Busy professionals often find themselves juggling demanding careers, family obligations, and social commitments. With such a tight schedule, it can be difficult to make time for ...

Visual Guide to Distinguishing Ants from Termites

Distinguishing ants from termites is crucial for homeowners who wish to protect their properties from structural damage. These tiny creatures, though seemingly unthreatening, can...

‘Active recovery’ after exercise is supposed to improve performance – but does it really work?

Imagine you have just finished a workout. Your legs are like jelly, your lungs are burning and you just want to collapse on the couch. But instead, you pick yourself up and ...

Plumber Rates In Canberra: What You Need To Know Before You Hire

When plumbing issues arise, most homeowners in Canberra have one major question: How much will a plumber cost? Whether it’s a leaking tap, a burst pipe, or a full bathroom renova...

Having an x-ray to diagnose knee arthritis might make you more likely to consider potentially unnecessary surgery

Osteoarthritis is a leading cause of chronic pain and disability, affecting more than two million Australians[1]. Routine x-rays aren’t recommended[2] to diagnose the condit...

Times Magazine

First Nations Writers Festival

The First Nations Writers Festival (FNWF) is back for its highly anticipated 2025 edition, continuing its mission to celebrate the voices, cultures and traditions of First Nations communities through literature, art and storytelling. Set to take ...

Improving Website Performance with a Cloud VPS

Websites represent the new mantra of success. One slow website may make escape for visitors along with income too. Therefore it's an extra offer to businesses seeking better performance with more scalability and, thus represents an added attracti...

Why You Should Choose Digital Printing for Your Next Project

In the rapidly evolving world of print media, digital printing has emerged as a cornerstone technology that revolutionises how businesses and creative professionals produce printed materials. Offering unparalleled flexibility, speed, and quality, d...

What to Look for When Booking an Event Space in Melbourne

Define your event needs early to streamline venue selection and ensure a good fit. Choose a well-located, accessible venue with good transport links and parking. Check for key amenities such as catering, AV equipment, and flexible seating. Pla...

How BIM Software is Transforming Architecture and Engineering

Building Information Modeling (BIM) software has become a cornerstone of modern architecture and engineering practices, revolutionizing how professionals design, collaborate, and execute projects. By enabling more efficient workflows and fostering ...

How 32-Inch Computer Monitors Can Increase Your Workflow

With the near-constant usage of technology around the world today, ergonomics have become crucial in business. Moving to 32 inch computer monitors is perhaps one of the best and most valuable improvements you can possibly implement. This-sized moni...

LayBy Shopping