The Times Australia
The Times World News

.
The Times Real Estate

.

The next breakthrough tool in biology? It's maths. Here are some ways mathematical biology is helping change the world

  • Written by Jennifer Flegg, Associate Professor in Applied Mathematics, The University of Melbourne
The next breakthrough tool in biology? It's maths. Here are some ways mathematical biology is helping change the world

Biology is rich in patterns. You’ll find them everywhere – from the number of petals on a flower (which generally correspond to a number in the Fibonacci sequence), to the number of vertebrae in mammals (giraffes, humans and quokkas all have seven neck vertebrae). Even many viruses follow patterns and have symmetry in their shells.

Mathematics is, at its core, the science of patterns. Patterns can be subtle. So without using maths to formally describe and understand them, we could miss them completely.

For a long time, biological research had largely progressed without the advanced mathematical modelling that has now become core to physics, engineering and climate science. But this is changing.

Mathematical biology is a growing field which promises to revolutionise microbiology, biotechnology, evolutionary biology and health care. With maths, scientific breakthroughs that previously required years of trial-and-error experimentation (and tonnes of waste) can be achieved in a fraction of the time.

Here are some of the latest advances being made in mathematical biology.

Read more: We've discovered a new rule of nature. It explains why animals' pointy parts grow the way they do[1]

Viruses and the natural world

As children, most of us would have played rock, paper, scissors, that game where rock crushes scissors, scissors cut paper and paper covers rock.

Well, the same maths we use to describe rock, paper, scissors can also be used to predict the cycle of dominance between animal species in a region that allows their coexistence. For example, there are three varieties of side-blotched lizards in south-western United States. Each variety has an advantage over one of the others, and a disadvantage to the third.

A male side-blotched lizard sits diagonally on a rock
Each variety of the side-blotched lizard has distinct advantages and disadvantages compared to the others. Shutterstock

Maths has also been at the forefront of our fight against COVID-19. If you watch the news you’ve probably heard of R0, a mathematical concept that indicates if an epidemic will occur. When R0 is greater than 1 the number of infections rises. With R0 less than 1 the epidemic will eventually die out.

This crucial concept in infectious disease epidemiology is a result of the power of maths and statistics to detect patterns in data that are too subtle to notice otherwise. It has been the key to predicting and managing the spread of the COVID-19 virus. What’s perhaps less well known is maths is also being used to:

  • design viruses[2] to kill cancer cells, such as by making combination therapies to treat ovarian cancer[3]
  • design interventions to help eliminate malaria[4]
  • identify[5] the cause of antimicrobial resistance
  • create clean drinking water for developing nations and arid regions
  • unlock the inner workings of living cells.

Read more: How to flatten the curve of coronavirus, a mathematician explains[6]

Whole cell models

We’re now at the onset of a new era in biology – one in which we can build mathematical models to comprehensively describe an individual biological cell in order to predict its fate. This is called the “whole cell model”. It allows us to compute the life of a cell and is helping us understand how the human body works.

One writer for The New Yorker magazine called[7] the quest to understand the intracellular world the “final frontier”. And despite the field still being in its infancy, potential applications are everywhere.

Imagine for a moment if we could build a mathematical replica model of the inner cellular workings of the Methicillin-resistant Staphylococcus aureus (MRSA), a bacterial superbug that doesn’t respond to standard antibiotics.

With a whole cell model of MSRA, we could use computer simulations informed by biological experiments to engineer new ways of both preventing and treating MRSA bacterial infections. This would add another layer of defence in our fight against resistant superbugs.

The benefit of whole cell modelling extends to cancer treatment too. For example, cancer immunotherapy relies on using a patient’s own immune system to fight the cancer. If we had a complete cell model of immune cells, we could fine-tune specific anti-tumour responses to improve therapies against cancer – and do so without any invasive exploration of the patient.

Clean water

Beyond health care, whole cell models are giving us methods to provide clean water for agriculture and food production. Effective water treatment produces high-quality water by removing microorganisms, organic matter and micropollutants.

However, buildup of the removed biological matter will cause the filters to become blocked by a layer of biological material, or “biofilm”. The biofilm must be removed for the filtration process to work again. In water desalination plants, around one-quarter of the running costs are attributed[8] to the removal of biofilms — it’s a big problem.

Whole cell models will allow us to dissect the mechanisms underpinning how biofilms form. We’ll then be able to identify suitable targets to inhibit biofilm formation in the first place, or destroy biofilms once they’re created, to restore the integrity of the water supply.

This is just one of many examples. Being able to understand, predict and control the behaviour of cells will fast-track discoveries in biotechnology and health care, ensuring a healthier, more secure and prosperous future for everyone.

Read more: COVID-19 heightens water problems around the world[9]

References

  1. ^ We've discovered a new rule of nature. It explains why animals' pointy parts grow the way they do (theconversation.com)
  2. ^ viruses (www.sciencedirect.com)
  3. ^ ovarian cancer (onlinelibrary.wiley.com)
  4. ^ eliminate malaria (journals.plos.org)
  5. ^ identify (aricjournal.biomedcentral.com)
  6. ^ How to flatten the curve of coronavirus, a mathematician explains (theconversation.com)
  7. ^ called (www.newyorker.com)
  8. ^ attributed (www.researchgate.net)
  9. ^ COVID-19 heightens water problems around the world (theconversation.com)

Read more https://theconversation.com/the-next-breakthrough-tool-in-biology-its-maths-here-are-some-ways-mathematical-biology-is-helping-change-the-world-186209

The Times Features

Empowering Education: Flinders University Partners with The Missing Link for AI Training

The Missing Link, a leader in intelligent AI and automation solutions collaborates with Flinders University to deliver a bespoke Microsoft 365 Copilot training program. This part...

Maximizing Your Outdoor Adventures with the Right Bike Rack

With cycling becoming an increasingly popular activity across Australia, having the right gear is crucial for a seamless experience. A reliable bike rack plays a vital role in en...

Wellness Tourism: Trends Shaping Travel in 2025 and Beyond

Wellness tourism, a rapidly expanding segment of the global travel industry, is redefining how individuals approach travel by focusing on self-care, personal enrichment, and tr...

Xplore Radiology in Leeton: Advanced Medical Imaging Services in Regional NSW

In the heart of New South Wales' Riverina region, Xplore Radiology in Leeton is a beacon of modern medical imaging technology and professional healthcare services. This state-of-...

Men's Work Boots: Durable and Dependable Footwear for Every Job

In today's demanding workplace, quality work boots are more than just footwear – they're essential safety equipment that can make the difference between a productive day and a work...

Breaking Barriers: Making Hearing Health Accessible to All Communities in Melbourne

In a bustling city like Melbourne, renowned for its cultural diversity and vibrant community spirit, the challenge of ensuring equitable access to healthcare services persists. A...

Times Magazine

Avant Stone's 2025 Nature's Palette Collection

Avant Stone, a longstanding supplier of quality natural stone in Sydney, introduces the 2025 Nature’s Palette Collection. Curated for architects, designers, and homeowners with discerning tastes, this selection highlights classic and contemporary a...

Professional-Grade Tactical Gear: Why 5.11 Tactical Leads the Field

When you're out in the field, your gear has to perform at the same level as you. In the world of high-quality equipment, 5.11 Tactical has established itself as a standard for professionals who demand dependability. Regardless of whether you’re inv...

Lessons from the Past: Historical Maritime Disasters and Their Influence on Modern Safety Regulations

Maritime history is filled with tales of bravery, innovation, and, unfortunately, tragedy. These historical disasters serve as stark reminders of the challenges posed by the seas and have driven significant advancements in maritime safety regulat...

What workers really think about workplace AI assistants

Imagine starting your workday with an AI assistant that not only helps you write emails[1] but also tracks your productivity[2], suggests breathing exercises[3], monitors your mood and stress levels[4] and summarises meetings[5]. This is not a f...

Aussies, Clear Out Old Phones –Turn Them into Cash Now!

Still, holding onto that old phone in your drawer? You’re not alone. Upgrading to the latest iPhone is exciting, but figuring out what to do with the old one can be a hassle. The good news? Your old iPhone isn’t just sitting there it’s potential ca...

Rain or Shine: Why Promotional Umbrellas Are a Must-Have for Aussie Brands

In Australia, where the weather can swing from scorching sun to sudden downpours, promotional umbrellas are more than just handy—they’re marketing gold. We specialise in providing wholesale custom umbrellas that combine function with branding power. ...

LayBy Shopping