The Times Australia
Google AI
The Times World News

.

Researchers trained mice to control seemingly random bursts of dopamine in their brains, challenging theories of reward and learning

  • Written by David Kleinfeld, Professor of Physics and Neurobiology, University of California San Diego

The Research Brief[1] is a short take about interesting academic work.

The big idea

My colleagues and I recently found that we were able to train mice to voluntarily increase the size and frequency of seemingly random dopamine impulses in their brains[2]. Conventional wisdom in neuroscience has held that dopamine levels change solely in response to cues from the world outside of the brain. Our new research shows that increases in dopamine can also be driven by internally mediated changes within the brain.

Dopamine is a small molecule found in the brains of mammals and is associated with feelings of reward and happiness. In 2014, my colleagues and I invented a new method to measure dopamine in real time in different parts of the brains of mice[3]. Using this new tool, my former thesis student, Conrad Foo, found that neurons in the brains of mice release large bursts of dopamine – called impulses – for no easily apparent reason[4]. This occurs at random times, but on average about once a minute.

Pavlov was famously able to train his dogs to salivate at the sound of a bell, not the sight of food. Today, scientists believe that the bell sound caused a release of dopamine to predict the forthcoming reward[5]. If Pavlov’s dogs could control their cue-based dopamine responses with a little training, we wondered if our mice could control their spontaneous dopamine impulses. To test this, our team designed an experiment that rewarded mice if they increased the strength of their spontaneous dopamine impulses. The mice were able to not only increase how strong these dopamine releases were, but also how often they occurred. When we removed the possibility of a reward, the dopamine impulses returned to their original levels.

Researchers trained mice to control seemingly random bursts of dopamine in their brains, challenging theories of reward and learning Pavlov famously showed that cues – like food or a bell – produce a response, but new mouse research shows that dopamine impulses can occur in the absence of a cue. Maxxl²/WikimediaCommons, CC BY-SA[6][7]

Why it matters

In the 1990s, neuroscientist Wolfram Schultz discovered that an animal’s brain will release dopamine if the animal expects a reward[8], not just when receiving a reward. This showed that dopamine can be produced in response to the expectation of a reward, not just the reward itself – the aforementioned modern version of Pavlov’s dog. But in both cases dopamine is produced in response to an outside cue of some sort. While there is always a small amount of random background dopamine “noise” in the brain[9], most[10] neuroscience research[11] had not considered[12] the possibility of random dopamine impulses large enough to produce changes in brain function and memory.

Our findings challenge the idea that dopamine signals are deterministic – produced only in response to a cue – and in fact challenge some fundamental theories of learning which currently have no place for large, random dopamine impulses. Researchers have long thought that dopamine enables animals to determine which cues can guide them toward a reward. Often a sequence of cues is involved – for example, an animal may be attracted to the sound of running water that only later leads to the reward of drinking.

Our observation of spontaneous bursts of dopamine – not ones that occur in response to a cue – don’t fit neatly with this framework. We suggest that large spontaneous impulses of dopamine could break these chains of events and impair an animal’s ability to connect indirect cues to rewards. The ability to actively influence these dopamine bursts could be a mechanism for mice to minimize this hypothesized problem in learning, but that remains to be seen.

What still isn’t known

My colleagues and I still need to connect the current findings with parts of the brain known to signal with dopamine[13]. In terms of behavior – such as foraging or navigating a maze in the laboratory – what is the effect of spontaneous impulses on the ability to learn? It is tempting to wonder whether spontaneous impulses could act as a false expectation of reward. It may be the case that spontaneous impulses give animals hope that a reward of some sort is “out there.” We plan to test whether there is a causal link between the spontaneous impulses of dopamine and mice venturing out to explore their surroundings. Finally, it is unknown whether the impulses help or hinder mental ability. Since the dopamine receptors in the cortex[14] are the same receptors that are overexpressed in schizophrenia[15], we wonder whether there is a connection between spontaneous impulses and mental health.

[Over 110,000 readers rely on The Conversation’s newsletter to understand the world. Sign up today[16].]

Read more https://theconversation.com/researchers-trained-mice-to-control-seemingly-random-bursts-of-dopamine-in-their-brains-challenging-theories-of-reward-and-learning-165727

Times Magazine

Australia’s electric vehicle surge — EVs and hybrids hit record levels

Australians are increasingly embracing electric and hybrid cars, with 2025 shaping up as the str...

Tim Ayres on the AI rollout’s looming ‘bumps and glitches’

The federal government released its National AI Strategy[1] this week, confirming it has dropped...

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

Mapping for Trucks: More Than Directions, It’s Optimisation

Daniel Antonello, General Manager Oceania, HERE Technologies At the end of June this year, Hampden ...

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

The Times Features

Australia’s Coffee Culture Faces an Afternoon Rethink as New Research Reveals a Surprising Blind Spot

Australia’s celebrated coffee culture may be world‑class in the morning, but new research* sugge...

Reflections invests almost $1 million in Tumut River park to boost regional tourism

Reflections Holidays, the largest adventure holiday park group in New South Wales, has launched ...

Groundbreaking Trial: Fish Oil Slashes Heart Complications in Dialysis Patients

A significant development for patients undergoing dialysis for kidney failure—a group with an except...

Worried after sunscreen recalls? Here’s how to choose a safe one

Most of us know sunscreen is a key way[1] to protect areas of our skin not easily covered by c...

Buying a property soon? What predictions are out there for mortgage interest rates?

As Australians eye the property market, one of the biggest questions is where mortgage interest ...

Last-Minute Christmas Holiday Ideas for Sydney Families

Perfect escapes you can still book — without blowing the budget or travelling too far Christmas...

98 Lygon St Melbourne’s New Mediterranean Hideaway

Brunswick East has just picked up a serious summer upgrade. Neighbourhood favourite 98 Lygon St B...

How Australians can stay healthier for longer

Australians face a decade of poor health unless they close the gap between living longer and sta...

The Origin of Human Life — Is Intelligent Design Worth Taking Seriously?

For more than a century, the debate about how human life began has been framed as a binary: evol...