The Times Australia
Fisher and Paykel Appliances
The Times World News

.

Research that shines light on how cells recover from threats may lead to new insights into Alzheimer's and ALS

  • Written by Brian Andrew Maxwell, Scientist in Cell Biology, St. Jude Children’s Research Hospital Graduate School of Biomedical Sciences
Research that shines light on how cells recover from threats may lead to new insights into Alzheimer's and ALS

The Research Brief[1] is a short take about interesting academic work.

The big idea

Our bodies contain a special protein tag that plays a role in how cells recover from specific threats to their survival, according to new research I co-authored. Understanding how this process works may be key to future treatments for neurodegenerative diseases, such as Alzheimer’s disease and some forms of dementia.

Cells regularly encounter potentially harmful changes in their environment, such as fluctuating temperature or exposure to UV light or toxins. To ensure survival, cells have evolved complex ways to adapt to these stressful changes. These mechanisms range from temporary changes in metabolism to wholesale shutdown of critical biological processes that might otherwise be permanently damaged.

For example, many cellular stresses temporarily shut down protein production while messenger RNAs[2], which carry part of the DNA code through the cell, become sequestered in dense structures known as stress granules[3]. When the stress passes, the stress granules are disassembled and cells emerge from this defensive state to resume normal activities.

But until now, molecular biologists like me[4] didn’t understand exactly how this mechanism worked.

In a pair of peer-reviewed studies published in the journal Science on June 25, 2021, my colleagues and I working in J. Paul Taylor[5]’s cell and molecular biology lab explain how a protein known as ubiquitin[6] is responsible for getting cells back up and running once the coast is clear.

In the first study[7], I discovered that different types of stress lead to specific proteins in cells getting tagged with ubiquitin in distinct ways. I exposed cells to either heat stress or a toxic chemical, then blocked the ubiquitin-tagging process after seemingly identical stress granules formed. To my surprise, blocking ubiquitin tagging only prevented stress granule disassembly for heat shock. Importantly, I also found that cells were unable to restart key biological processes like protein production and transport when these stress granules remained present, even after a return to normal temperatures.

In the second study[8], my colleague Youngdae Gwon[9] looked closer into this process. He discovered that heat stress triggers ubiquitin tagging of a key protein that allows an enzyme to disassemble stress granules. This enzyme grabs onto the ubiquitin tag and uses it as a handle to pull the structure apart.

Why it matters

Researchers have linked stress granule biology and the stress response process in general to several neurodegenerative diseases[10], including Alzheimer’s disease, ALS or Lou Gehrig’s disease, and some forms of dementia.

For example, mutations in the the same protein, which we found to be necessary to dissemble stress granules, can cause inherited neurodegenerative diseases. Understanding how stress granules are regulated is critical to getting a better grasp on how these diseases work and potentially finding new treatments for them.

Stress granules play a role in the development of neurodegenerative diseases like ALS.

What still isn’t known

Although we identified several key factors in the role ubiquitin plays in the disassembly of stress granules, many molecular details of this process remain unknown. To gain further insight, scientists will need to identify which enzymes are responsible for putting the ubiquitin tag on proteins during stress in the first place. Additionally, it will be important to understand how mutations that lead to neurodegenerative diseases might also affect the stress recovery process.

What other research is being done

Researchers are investigating various aspects of stress granule biology and its links to neurodegenerative disease. Some are working to recreate stress granules in a test tube[11] to explore questions not easily answered by working in cells. And others are looking inside live neurons, mice and fruit flies to understand how disease mutations affect stress recovery in living cells and creatures.

[The Conversation’s most important coronavirus headlines, weekly in a science newsletter[12]]

References

  1. ^ Research Brief (theconversation.com)
  2. ^ messenger RNAs (www.nature.com)
  3. ^ stress granules (doi.org)
  4. ^ like me (scholar.google.com)
  5. ^ J. Paul Taylor (scholar.google.com)
  6. ^ ubiquitin (www.healthline.com)
  7. ^ In the first study (science.sciencemag.org)
  8. ^ In the second study (science.sciencemag.org)
  9. ^ Youngdae Gwon (scholar.google.com)
  10. ^ several neurodegenerative diseases (doi.org)
  11. ^ recreate stress granules in a test tube (doi.org)
  12. ^ The Conversation’s most important coronavirus headlines, weekly in a science newsletter (theconversation.com)

Read more https://theconversation.com/research-that-shines-light-on-how-cells-recover-from-threats-may-lead-to-new-insights-into-alzheimers-and-als-163210

Active Wear

Times Magazine

World Kindness Day: Commentary from Kath Koschel, founder of Kindness Factory.

What does World Kindness Day mean to you as an individual, and to the Kindness Factory as an organ...

In 2024, the climate crisis worsened in all ways. But we can still limit warming with bold action

Climate change has been on the world’s radar for decades[1]. Predictions made by scientists at...

End-of-Life Planning: Why Talking About Death With Family Makes Funeral Planning Easier

I spend a lot of time talking about death. Not in a morbid, gloomy way—but in the same way we d...

YepAI Joins Victoria's AI Trade Mission to Singapore for Big Data & AI World Asia 2025

YepAI, a Melbourne-based leader in enterprise artificial intelligence solutions, announced today...

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an onli...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beau...

The Times Features

World Kindness Day: Commentary from Kath Koschel, founder of Kindness Factory.

What does World Kindness Day mean to you as an individual, and to the Kindness Factory as an organ...

HoMie opens new Emporium store as a hub for streetwear and community

Melbourne streetwear label HoMie has opened its new store in Emporium Melbourne, but this launch is ...

TAFE NSW empowers women with the skills for small business success

Across New South Wales, TAFE NSW graduates are turning their skills into success, taking what they h...

The median price of residential land sold nationally jumped by 6.8 per cent

Land prices a roadblock to 1.2 million homes target “The median price of residential land sold na...

Farm to Fork Australia Launches Exciting 7th Season on Ten

New Co-Host Magdalena Roze joining Michael Weldon, Courtney Roulston, Louis Tikaram, and Star Guest ...

How GST Revenue is Allocated to Each State or Territory

The Goods and Services Tax (GST) is one of the most important revenue streams for Australian gov...

In 2024, the climate crisis worsened in all ways. But we can still limit warming with bold action

Climate change has been on the world’s radar for decades[1]. Predictions made by scientists at...

Higher than expected inflation report dashes hopes for further RBA rate cuts

Inflation jumped 1.3% in the September quarter, above economists’ and the Reserve Bank’s own exp...

How Inflation Influences the RBA’s Determination on Fiscal Policy

Inflation is one of the most important economic indicators in Australia, and it plays a central ro...