The Times Australia
Fisher and Paykel Appliances
The Times World News

.

Why do disinfectants only kill 99.9% of germs? Here’s the science

  • Written by Hassan Vally, Associate Professor, Epidemiology, Deakin University

Have you ever wondered why most disinfectants indicate they kill 99.9% or 99.99% of germs, but never promise to wipe out all of them? Perhaps the thought has crossed your mind mid-way through cleaning your kitchen or bathroom.

Surely, in a world where science is able to do all sorts of amazing things, someone would have invented a disinfectant that is 100% effective?

The answer to this conundrum requires understanding a bit of microbiology and a bit of mathematics.

What is a disinfectant?

A disinfectant is a substance used to kill or inactivate bacteria, viruses and other microbes on inanimate objects.

There are literally millions of microbes on surfaces and objects in our domestic environment[1]. While most microbes are not harmful (and some are even good for us) a small proportion can make us sick.

Although disinfection can include physical interventions such as heat treatment[2] or the use of UV light[3], typically when we think of disinfectants we are referring to the use of chemicals to kill microbes on surfaces or objects[4].

Chemical disinfectants often contain active ingredients[5] such as alcohols, chlorine compounds and hydrogen peroxide which can target vital components of different microbes to kill them.

Gloved hands spraying and wiping a surface.
Diseinfectants can contain a range of ingredients. Maridav/Shutterstock[6]

The maths of microbial elimination

In the past few years we’ve all become familiar with the concept of exponential growth[7] in the context of the spread of COVID cases.

This is where numbers grow at an ever-accelerating rate, which can lead to an explosion in the size of something very quickly. For example, if a colony of 100 bacteria doubles every hour, in 24 hours’ time the population of bacteria would be more than 1.5 billion.

Conversely, the killing or inactivating of microbes follows a logarithmic decay pattern[8], which is essentially the opposite of exponential growth. Here, while the number of microbes decreases over time, the rate of death becomes slower as the number of microbes becomes smaller.

For example, if a particular disinfectant kills 90% of bacteria every minute, after one minute, only 10% of the original bacteria will remain. After the next minute, 10% of that remaining 10% (or 1% of the original amount) will remain, and so on.

Because of this logarithmic decay pattern, it’s not possible to ever claim you can kill 100% of any microbial population. You can only ever scientifically say that you are able to reduce the microbial load by a proportion of the initial population. This is why most disinfectants sold for domestic use indicate they kill 99.9% of germs.

Other products such as hand sanitisers and disinfectant wipes, which also often purport to kill 99.9% of germs, follow the same principle.

A tub of cleaning supplies.
You might have noticed none of the cleaning products in your laundry cupboard kill 100% of germs. Africa Studio/Shutterstock[9]

Real-world implications

As with a lot of science, things get a bit more complicated in the real world than they are in the laboratory. There are a number of other factors to consider when assessing how well a disinfectant is likely to remove microbes from a surface.

One of these factors is the size of the initial microbial population that you’re trying to get rid of. That is, the more contaminated a surface is, the harder the disinfectant needs to work to eliminate the microbes.

If for example you were to start off with only 100 microbes on a surface or object, and you removed 99.9% of these using a disinfectant, you could have a lot of confidence that you have effectively removed all the microbes from that surface or object (called sterilisation).

In contrast, if you have a large initial microbial population of hundreds of millions or billions of microbes contaminating a surface, even reducing the microbial load by 99.9% may still mean there are potentially millions of microbes remaining on the surface.

Time is is a key factor that determines how effectively microbes are killed. So exposing a highly contaminated surface to disinfectant for a longer period is one way to ensure you kill more of the microbial population.

This is why if you look closely at the labels of many common household disinfectants, they will often suggest that to disinfect you should apply the product then wait a specified time before wiping clean. So always consult the label on the product you’re using.

A woman cleaning a kitchen counter with a pink cloth.
Disinfectants won’t necessarily work in your kitchen exactly like they work in a lab. Ground Picture/Shutterstock[10]

Other factors such as temperature, humidity and the type of surface also influence how well a disinfectant works[11] outside the lab.

Similarly, microbes in the real world may be either more or less sensitive to disinfection than those used for testing in the lab.

Disinfectants are one part infection control

The sensible use of disinfectants plays an important role in our daily lives in reducing our exposure to pathogens (microbes that cause illness). They can therefore reduce our chances of getting sick[12].

The fact disinfectants can’t be shown to be 100% effective from a scientific perspective in no way detracts from their importance in infection control. But their use should always be complemented by other infection control practices, such as hand washing[13], to reduce the risk of infection.

References

  1. ^ our domestic environment (theconversation.com)
  2. ^ heat treatment (www.cfsph.iastate.edu)
  3. ^ UV light (theconversation.com)
  4. ^ on surfaces or objects (www.tga.gov.au)
  5. ^ active ingredients (pmc.ncbi.nlm.nih.gov)
  6. ^ Maridav/Shutterstock (www.shutterstock.com)
  7. ^ exponential growth (www.cebm.net)
  8. ^ logarithmic decay pattern (www.endurocide.com)
  9. ^ Africa Studio/Shutterstock (www.shutterstock.com)
  10. ^ Ground Picture/Shutterstock (www.shutterstock.com)
  11. ^ how well a disinfectant works (www.cdc.gov)
  12. ^ chances of getting sick (www.cdc.gov)
  13. ^ hand washing (www.healthdirect.gov.au)

Read more https://theconversation.com/why-do-disinfectants-only-kill-99-9-of-germs-heres-the-science-241127

Active Wear

Times Magazine

World Kindness Day: Commentary from Kath Koschel, founder of Kindness Factory.

What does World Kindness Day mean to you as an individual, and to the Kindness Factory as an organ...

In 2024, the climate crisis worsened in all ways. But we can still limit warming with bold action

Climate change has been on the world’s radar for decades[1]. Predictions made by scientists at...

End-of-Life Planning: Why Talking About Death With Family Makes Funeral Planning Easier

I spend a lot of time talking about death. Not in a morbid, gloomy way—but in the same way we d...

YepAI Joins Victoria's AI Trade Mission to Singapore for Big Data & AI World Asia 2025

YepAI, a Melbourne-based leader in enterprise artificial intelligence solutions, announced today...

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an onli...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beau...

The Times Features

How early is too early’ for Hot Cross Buns to hit supermarket and bakery shelves

Every year, Australians find themselves in the middle of the nation’s most delicious dilemmas - ...

Ovarian cancer community rallied Parliament

The fight against ovarian cancer took centre stage at Parliament House in Canberra last week as th...

After 2 years of devastating war, will Arab countries now turn their backs on Israel?

The Middle East has long been riddled by instability. This makes getting a sense of the broader...

RBA keeps interest rates on hold, leaving borrowers looking further ahead for relief

As expected, the Reserve Bank of Australia (RBA) has kept the cash rate steady at 3.6%[1]. Its b...

Crystalbrook Collection Introduces ‘No Rings Attached’: Australia’s First Un-Honeymoon for Couples

Why should newlyweds have all the fun? As Australia’s crude marriage rate falls to a 20-year low, ...

Echoes of the Past: Sue Carter Brings Ancient Worlds to Life at Birli Gallery

Launching November 15 at 6pm at Birli Gallery, Midland, Echoes of the Past marks the highly anti...

Why careless adoption of AI backfires so easily

Artificial intelligence (AI) is rapidly becoming commonplace, despite statistics showing[1] th...

How airline fares are set and should we expect lower fares any time soon?

Airline ticket prices may seem mysterious (why is the same flight one price one day, quite anoth...

What is the American public’s verdict on the first year of Donald Trump’s second term as President?

In short: the verdict is decidedly mixed, leaning negative. Trump’s overall job-approval ra...