The Times Australia
Google AI
The Times World News

.

You leave a ‘microbe fingerprint’ on every piece of clothing you wear – and it could help forensic scientists solve crimes

  • Written by Paola A. Magni, Associate Professor of Forensic Science, Murdoch University
You leave a ‘microbe fingerprint’ on every piece of clothing you wear – and it could help forensic scientists solve crimes

When you think of a criminal investigation, you might picture detectives meticulously collecting and analysing evidence found at the scene: weapons, biological fluids, footprints and fingerprints. However, this is just the beginning of an attempt to reconstruct the events and individuals involved in the crime.

At the heart of the process lies the “principle of exchange[1]” formulated by the French criminologist Edmond Locard in the early 1900s, which states that “every contact leaves a trace”. The transfer of materials between the parties involved in a crime (the victim, the perpetrator, objects, the environment) forms the basis for reconstructing the events.

In Locard’s time, these traces were typically things you could see with a magnifying glass or microscope, such as pollen, sand and fibres. However, such evidence is limited because much of it is not directly associated with a specific individual.

In our latest research[2], we have shown how the population of bacteria on a person’s skin leaves traces on the clothes they wear – and how these traces last for months and can be used to uniquely identify the wearer.

Microbial traces

Imagine a crime scene where an investigator finds a victim and a piece of clothing that doesn’t belong to them. Pollen or grains of sand might help the investigator find out where it came from, but what about identifying the owner of the clothing?

Skin cells, hairs and biological fluids are good contenders. However, another thing very specific to an individual is the unique community[3] of microorganisms on and within their body.

These microbes are specific to different parts of the body, can persist over long periods of time and can be transferred to other people and to the environment. This makes them useful to address a variety of questions in forensics[4].

“Forensic microbiology” got its start in the early 2000s, as scientists set out to find ways to defend against bioterrorism[5]. Today[6] forensic microbiology is used to identify individuals after death, understand what their health was like before they died[7], determine how and why people have died[8], how long it has been since they died[9], and where they came from[10].

In a nutshell, today’s update on Locard’s principle is that “every contact leaves a microbiological trace”.

The ‘touch microbiome’

While this principle has been established, we still want to know more about how much of an individual’s microbiome is transferred to their surroundings. We also need to know how long it persists, and whether certain microbes may be more useful than others for identification.

We also want to understand how microbial traces may be contaminated by other items or the environment, and how different receiving surfaces affect microbial populations.

In 2021, two of the authors (Procopio and Gino) and colleagues at the University of Central Lancashire in the UK and the University of Eastern Piedmont in Italy first described the “touch microbiome[11]” – the unique bacterial populations on individuals’ skin. This work also studied how these bacteria could be transferred and persist for up to a month on non-porous surfaces, such as a glass slide, in uncontrolled indoor surroundings.

This team also analysed DNA from samples belonging to dead bodies from old cases, which had been frozen for up to 16 years. They were able to identify specific populations of microbes[12] linked to the manner of death and the decomposition stage of the bodies. This showed the microbial signature can be used to improve our understanding of cold cases when DNA extracts are still available.

Tracing T-shirts

In our most recent work, the third author (Magni) joined the collaboration to improve the potential of individual identification from clothes, items often collected as evidence[13] at the crime scene.

In our study[14], cotton T-shirts were worn by two individuals for 24 hours in Australia. The T-shirts were then placed in a controlled environment for up to six months, alongside unworn items used as controls. Samples from both worn and unworn T-shirts were taken at various points in time and frozen.

The samples were then shipped (still frozen) to Italy for microbial DNA extraction. Next, sequencing was conducted in the UK, with the goal of identifying the microbial species present in the samples.

Results showed the two volunteers transferred distinct and recognisable microbes onto the clothing, each unique to the respective individual. Additionally, we could distinguish between worn and unworn items even after an extended period of time. The microbiome remained stable on the worn garments for up to 180 days.

We also observed the transfer of specific bacteria from the worn items to the unworn ones stored closest to them, showing the possibility of microbe transfer between items.

Learning more from clothes

Clothes at any crime scene can provide key evidence[15] for the investigation process.

They can aid in profiling individuals by revealing indicators of gender, occupation, income, social status, political, religious or cultural affiliations, and even marital status.

Additionally, they can provide clues regarding the manner of death[16], the location of the crime, and in certain cases, even support the estimation of the time since death[17].

Clothes play a crucial role in reconstructing events associated with the crime and establishing the identity of individuals involved.

Our research shows clothing can provide even more evidence. The discovery of unique microbiomes capable of identifying individuals from clothing marks a significant stride forward.

References

  1. ^ principle of exchange (www.scribd.com)
  2. ^ latest research (pubmed.ncbi.nlm.nih.gov)
  3. ^ unique community (www.ncbi.nlm.nih.gov)
  4. ^ questions in forensics (pubmed.ncbi.nlm.nih.gov)
  5. ^ defend against bioterrorism (pubmed.ncbi.nlm.nih.gov)
  6. ^ Today (www.frontiersin.org)
  7. ^ before they died (www.nature.com)
  8. ^ how and why people have died (www.frontiersin.org)
  9. ^ how long it has been since they died (www.nature.com)
  10. ^ where they came from (pubmed.ncbi.nlm.nih.gov)
  11. ^ touch microbiome (pubmed.ncbi.nlm.nih.gov)
  12. ^ populations of microbes (www.fsigenetics.com)
  13. ^ collected as evidence (lumenpublishing.com)
  14. ^ our study (pubmed.ncbi.nlm.nih.gov)
  15. ^ key evidence (acspublisher.com)
  16. ^ manner of death (www.mdpi.com)
  17. ^ time since death (www.sciencedirect.com)

Read more https://theconversation.com/you-leave-a-microbe-fingerprint-on-every-piece-of-clothing-you-wear-and-it-could-help-forensic-scientists-solve-crimes-229203

Times Magazine

With Nvidia’s second-best AI chips headed for China, the US shifts priorities from security to trade

This week, US President Donald Trump approved previously banned exports[1] of Nvidia’s powerful ...

Navman MiVue™ True 4K PRO Surround honest review

If you drive a car, you should have a dashcam. Need convincing? All I ask that you do is search fo...

Australia’s supercomputers are falling behind – and it’s hurting our ability to adapt to climate change

As Earth continues to warm, Australia faces some important decisions. For example, where shou...

Australia’s electric vehicle surge — EVs and hybrids hit record levels

Australians are increasingly embracing electric and hybrid cars, with 2025 shaping up as the str...

Tim Ayres on the AI rollout’s looming ‘bumps and glitches’

The federal government released its National AI Strategy[1] this week, confirming it has dropped...

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

The Times Features

A Thoughtful Touch: Creating Custom Wrapping Paper with Adobe Firefly

Print it. Wrap it. Gift it. The holidays are full of colour, warmth and little moments worth celebr...

Will the Australian dollar keep rising in 2026? 3 factors to watch in the new year

After several years of steadily declining, the Australian dollar staged a meaningful recovery in...

The Daily Concerns for People Living in Hobart

Hobart is often portrayed as a lifestyle haven — a harbour city framed by Mount Wellington, rich...

Planning your next holiday? Here’s how to spot and avoid greenwashing

More of us than ever are trying to make environmentally responsible travel choices. Sustainable ...

AEH Expand Goulburn Dealership to Support Southern Tablelands Farmers

AEH Group have expanded their footprint with a new dealership in Goulburn, bringing Case IH and ...

A Whole New World of Alan Menken

EGOT WINNER AND DISNEY LEGEND ALAN MENKEN  HEADING TO AUSTRALIA FOR A ONCE-IN-A-LIFETIME PERFORM...

Ash Won a Billboard and Accidentally Started a Movement!

When Melbourne commuters stopped mid-scroll and looked up, they weren’t met with a brand slogan or a...

Is there much COVID around? Do I need the new booster shot LP.8.1?

COVID rarely rates a mention in the news these days, yet it hasn’t gone away[1]. SARS-CoV-2, ...

Why Fitstop Is the Gym Australians Are Turning to This Christmas

And How ‘Training with Purpose’ Is Replacing the Festive Fitness Guilt Cycle As the festive season ...