The Times Australia
The Times World News

.
The Times Real Estate

.

how they work, what they do, and where they're heading

  • Written by Christopher Ferrie, Senior Lecturer, UTS Chancellor's Postdoctoral Research and ARC DECRA Fellow, University of Technology Sydney
how they work, what they do, and where they're heading

In June, an IBM computing executive claimed quantum computers were entering the “utility” phase[1], in which high-tech experimental devices become useful. In September, Australia’s Chief Scientist Cathy Foley went so far as to declare “the dawn of the quantum era[2]”.

This week, Australian physicist Michelle Simmons won the nation’s top science award[3] for her work on developing silicon-based quantum computers.

Obviously, quantum computers are having a moment. But – to step back a little – what exactly are they?

What is a quantum computer?

One way to think about computers is in terms of the kinds of numbers they work with.

The digital computers we use every day rely on whole numbers (or integers), representing information as strings of zeroes and ones which they rearrange according to complicated rules. There are also analogue computers, which represent information as continuously varying numbers (or real numbers), manipulated via electrical circuits or spinning rotors or moving fluids.

Read more: There's a way to turn almost any object into a computer – and it could cause shockwaves in AI[4]

In the 16th century, the Italian mathematician Girolamo Cardano invented another kind of number called complex numbers to solve seemingly impossible tasks such as finding the square root of a negative number. In the 20th century, with the advent of quantum physics, it turned out complex numbers also naturally describe the fine details of light and matter.

In the 1990s, physics and computer science collided when it was discovered that some problems could be solved much faster with algorithms that work directly with complex numbers as encoded in quantum physics.

The next logical step was to build devices that work with light and matter to do those calculations for us automatically. This was the birth of quantum computing.

Why does quantum computing matter?

We usually think of the things our computers do in terms that mean something to us — balance my spreadsheet, transmit my live video, find my ride to the airport. However, all of these are ultimately computational problems, phrased in mathematical language.

As quantum computing is still a nascent field, most of the problems we know quantum computers will solve are phrased in abstract mathematics. Some of these will have “real world” applications we can’t yet foresee, but others will find a more immediate impact.

One early application will be cryptography. Quantum computers will be able to crack today’s internet encryption algorithms, so we will need quantum-resistant cryptographic technology. Provably secure cryptography and a fully quantum internet would use quantum computing technology.

A microscopic view of a square, iridescent computer chip against an orange background.
Google has claimed its Sycamore quantum processor can outperform classical computers at certain tasks. Google

In materials science, quantum computers will be able to simulate molecular structures at the atomic scale, making it faster and easier to discover new and interesting materials. This may have significant applications in batteries, pharmaceuticals, fertilisers and other chemistry-based domains.

Quantum computers will also speed up many difficult optimisation problems, where we want to find the “best” way to do something. This will allow us to tackle larger-scale problems in areas such as logistics, finance, and weather forecasting.

Machine learning is another area where quantum computers may accelerate progress. This could happen indirectly, by speeding up subroutines in digital computers, or directly if quantum computers can be reimagined as learning machines.

What is the current landscape?

In 2023, quantum computing is moving out of the basement laboratories of university physics departments and into industrial research and development facilities. The move is backed by the chequebooks of multinational corporations and venture capitalists.

Contemporary quantum computing prototypes – built by IBM[5], Google[6], IonQ[7], Rigetti[8] and others – are still some way from perfection.

Read more: Error correcting the things that go wrong at the quantum computing scale[9]

Today’s machines are of modest size and susceptible to errors, in what has been called the “noisy intermediate-scale quantum[10]” phase of development. The delicate nature of tiny quantum systems means they are prone to many sources of error, and correcting these errors is a major technical hurdle.

The holy grail is a large-scale quantum computer which can correct its own errors. A whole ecosystem of research factions and commercial enterprises are pursuing this goal via diverse technological approaches.

Superconductors, ions, silicon, photons

The current leading approach uses loops of electric current inside superconducting circuits to store and manipulate information. This is the technology adopted by Google[11], IBM[12], Rigetti[13] and others.

Another method, the “trapped ion” technology, works with groups of electrically charged atomic particles, using the inherent stability of the particles to reduce errors. This approach has been spearheaded by IonQ[14] and Honeywell[15].

Illustration showing glowing dots and patterns of light.
An artist’s impression of a semiconductor-based quantum computer. Silicon Quantum Computing[16]

A third route of exploration is to confine electrons within tiny particles of semiconductor material, which could then be melded into the well-established silicon technology of classical computing. Silicon Quantum Computing[17] is pursuing this angle.

Yet another direction is to use individual particles of light (photons), which can be manipulated with high fidelity. A company called PsiQuantum is designing intricate “guided light” circuits[18] to perform quantum computations.

There is no clear winner yet from among these technologies, and it may well be a hybrid approach that ultimately prevails.

Where will the quantum future take us?

Attempting to forecast the future of quantum computing today is akin to predicting flying cars and ending up with cameras in our phones instead. Nevertheless, there are a few milestones that many researchers would agree are likely to be reached in the next decade.

Better error correction is a big one. We expect to see a transition from the era of noisy devices to small devices that can sustain computation through active error correction.

Another is the advent of post-quantum cryptography. This means the establishment and adoption of cryptographic standards that can’t easily be broken by quantum computers.

Read more: Quantum computers threaten our whole cybersecurity infrastructure: here's how scientists can bulletproof it[19]

Commercial spin-offs of technology such as quantum sensing are also on the horizon.

The demonstration of a genuine “quantum advantage” will also be a likely development. This means a compelling application where a quantum device is unarguably superior to the digital alternative.

And a stretch goal for the coming decade is the creation of a large-scale quantum computer free of errors (with active error correction).

When this has been achieved, we can be confident the 21st century will be the “quantum era”.

References

  1. ^ quantum computers were entering the “utility” phase (www.nytimes.com)
  2. ^ the dawn of the quantum era (www.chiefscientist.gov.au)
  3. ^ Michelle Simmons won the nation’s top science award (www.abc.net.au)
  4. ^ There's a way to turn almost any object into a computer – and it could cause shockwaves in AI (theconversation.com)
  5. ^ IBM (www.ibm.com)
  6. ^ Google (quantumai.google)
  7. ^ IonQ (ionq.com)
  8. ^ Rigetti (www.rigetti.com)
  9. ^ Error correcting the things that go wrong at the quantum computing scale (theconversation.com)
  10. ^ noisy intermediate-scale quantum (thequantuminsider.com)
  11. ^ Google (quantumai.google)
  12. ^ IBM (www.ibm.com)
  13. ^ Rigetti (www.rigetti.com)
  14. ^ IonQ (ionq.com)
  15. ^ Honeywell (www.honeywell.com)
  16. ^ Silicon Quantum Computing (www.sqc.com.au)
  17. ^ Silicon Quantum Computing (sqc.com.au)
  18. ^ intricate “guided light” circuits (www.nature.com)
  19. ^ Quantum computers threaten our whole cybersecurity infrastructure: here's how scientists can bulletproof it (theconversation.com)

Read more https://theconversation.com/quantum-computers-in-2023-how-they-work-what-they-do-and-where-theyre-heading-215804

The Times Features

How to Treat Hair Loss Without a Hair Transplant

Understanding Hair Loss Hair loss can significantly affect individuals, both physically and emotionally. Identifying the causes and types can help address the issue more effecti...

How to Find a Trustworthy Professional for Your Plumbing Needs

Nowra is an idyllic locality often referred to as the city of the Shoalhaven City Council in the South Coast region of New South Wales, Australia. This picturesque suburb feature...

How to Choose a Mattress for Back/Neck Pain and All Sleepers?

Waking up with a stiff neck or aching back can derail your entire day. If you're one of the millions struggling with chronic pain, a supportive mattress is more than a luxury – i...

What to Look for in a Professional Debt Collection Service

Often in life, overdue payments are accidental or caused by unusual circumstances. This can cause some temporary convenience, but everything carries on as usual. However, when th...

Be inspired by celeb home decor from across the globe

GET THE LOOK: INDULGE IN THE SAME INTERIOR AS YOUR FAVE CELEBS There is a reason that Denmark ranks the highest on the happiness scale worldwide, one word: Hygge. Hygge. Hygge is ...

Maximizing Space in Narrow Lot Homes: Smart Design Solutions

Urban housing markets continue to push homeowners toward smaller, narrower lots as land prices climb and city populations grow. These thin slices of real estate present unique de...

Times Magazine

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

LayBy Shopping