The Times Australia
The Times World News

.

What is a 'toroidal propeller' and could it change the future of drones? An expert explains

  • Written by Abdulghani Mohamed, Senior Lecturer in Aerospace Engineering, RMIT University
What is a 'toroidal propeller' and could it change the future of drones? An expert explains

The basic configuration of traditional propellers has not fundamentally changed since the first powered flight by the Wright brothers in 1903[1].

However, as engineers learn more about aerodynamics and attempt new experiments, propellers are evolving to more complex shapes. These feature multiple blades, high sweep angles, blade tip devices and other features to optimise performance in different conditions.

A recent advancement in propeller technology are “toroidal” propellers. These devices are ring-shaped, with the blades looping around each other. A few recent articles[2] and videos[3] have been hyping these – but how “revolutionary” are they, really?

Refining the shape

In 2017, researchers at MIT filed a patent[4] for toroidal propellers. Their patent claims the invention is more efficient than traditional propellers and is less noisy.

Coincidentally, already in 2012, US engineering company Sharrow Marine[5] also developed a toroidal propeller for boats; they have demonstrated it to be more efficient and quieter than traditional marine propellers.

The reason toroidal propellers may be quieter is because of their complex shape – it minimises the strength of the vortex (a spiralling movement of air, water, or another fluid) that naturally happens over propeller blade tips.

This happens because there’s a high-pressure region under the blade, and low pressure above it. As high-pressure air from under the blade moves towards the low-pressure region above it, it travels in a spiral – a vortex.

A diagram showing low pressure above a plane wing and high pressure below it, with an arrow indicating air movement at the tip
A tip vortex happens due to different pressures below and above the propeller blade or airplane wing. The Conversation, CC BY-ND[6]

This phenomenon is not unique to propeller blades, which are essentially rotating wings. The wing of a plane also experiences this phenomenon. Engineers have done much research on wingtip devices[7] that can minimise this.

The use of closed-loop structures – like in a toroidal propeller – is one way of reducing tip vortices.

Even though the basic propeller shape has remained the same since its invention, many propeller blade designs have been put forward. To test these, engineers need to perform design trade-off studies. Some of these approaches have been tested to try and make helicopter blades[8] and drones[9] more efficient and less noisy.

Illustration from MIT’s 2017 patent, showing a regular propeller in 5a and a toroidal propeller in 5b. US Patent US10836466B2[10]

No magic propeller

It’s important to understand propeller geometry must be optimised for a specific “operational envelope”. This means the properties of the fluid or air it operates in, rotation speed, forward speed, and other details. Outside that envelope, the propeller will perform poorly.

So far, nobody has achieved the magical propeller geometry that will achieve low noise and high efficiency for all operating conditions and scales. Toroidal propellers are no exception – from the sparse results available so far, their advantages are not yet fully quantified.

Comparing a well-designed toroidal propeller to a poorly designed traditional propeller will show a significant improvement, but is not a fair comparison.

Well-designed toroidal propellers may have advantages in specific operating conditions, such as dense fluids or a specific range of speeds. However, the question remains as to how a toroidal propeller compares to a well-designed traditional propeller[11] for the same conditions.

This is a challenge, since improvements are always relative to a benchmark – which may not be the most efficient design to start with.

Another aspect of a fair comparison that doesn’t seem to have been published for toroidal propellers is comparing different propellers at the same thrust force[12]. Only then you can see the true advantages regarding noise reduction and energy required to spin the propeller.

Read more: Drones to deliver incessant buzzing noise, and packages[13]

Home experiments are not representative

An MIT announcement[14] earlier this year about toroidal propellers winning one of MIT Lincoln Laboratory’s 2022 R&D 100 Awards generated significant excitement. There’s been widespread experimentation[15] with 3D-printed toroidal propellers, but not all of these have delivered positive results.

This may be due to un-optimised geometry and poor scientific rigour by the general public conducting some of these experiments. This gives the scientific community a research opportunity – to truly assess and optimise toroidal and traditional propellers to enhance their performance.

Previous optimisation studies have been conducted, some of which even use machine-learning[16] techniques to identify suitable geometries. Engineers are also trying to make propellers that sound less annoying, by considering how humans perceive sound[17].

Expensive and hard to scale

Toroidal propellers also have clear disadvantages. The main one is the difficulty to scale them to mass production due to their complex geometry, which leads to high production costs.

The complex structure also requires special care to avoid unwanted vibrations – a significant issue when rotating at high speeds. This also adds to higher manufacturing costs.

When it comes to using toroidal propellers for drones, their heavier weight will also have implications on the responsiveness and stability of the drone. This is critical when operating in windy and turbulent conditions[18] such as windy weather.

Overall, toroidal propellers are an exciting recent development in propeller design, at least in some cases. While they can be more quiet, they won’t completely replace traditional props just yet – there’s no single propeller design that will suit all situations.

Read more: Got a drone for Christmas? Know the law before taking to the skies[19]

References

  1. ^ by the Wright brothers in 1903 (www.britannica.com)
  2. ^ articles (newatlas.com)
  3. ^ videos (undecidedmf.com)
  4. ^ MIT filed a patent (patents.google.com)
  5. ^ Sharrow Marine (www.sharrowmarine.com)
  6. ^ CC BY-ND (creativecommons.org)
  7. ^ wingtip devices (akademiabaru.com)
  8. ^ helicopter blades (www.sciencedirect.com)
  9. ^ drones (ieeexplore.ieee.org)
  10. ^ US Patent US10836466B2 (patents.google.com)
  11. ^ well-designed traditional propeller (www.researchgate.net)
  12. ^ thrust force (www1.grc.nasa.gov)
  13. ^ Drones to deliver incessant buzzing noise, and packages (theconversation.com)
  14. ^ MIT announcement (www.youtube.com)
  15. ^ widespread experimentation (www.youtube.com)
  16. ^ machine-learning (www.rmit.edu.au)
  17. ^ humans perceive sound (arc.aiaa.org)
  18. ^ operating in windy and turbulent conditions (www.mdpi.com)
  19. ^ Got a drone for Christmas? Know the law before taking to the skies (theconversation.com)

Read more https://theconversation.com/what-is-a-toroidal-propeller-and-could-it-change-the-future-of-drones-an-expert-explains-206498

Times Magazine

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Times Features

Exploring the Curriculum at a Modern Junior School in Melbourne

Key Highlights The curriculum at junior schools emphasises whole-person development, catering to children’s physical, emotional, and intellectual needs. It ensures early year...

Distressed by all the bad news? Here’s how to stay informed but still look after yourself

If you’re feeling like the news is particularly bad at the moment, you’re not alone. But many of us can’t look away – and don’t want to. Engaging with news can help us make ...

The Role of Your GP in Creating a Chronic Disease Management Plan That Works

Living with a long-term condition, whether that is diabetes, asthma, arthritis or heart disease, means making hundreds of small decisions every day. You plan your diet against m...

Troubleshooting Flickering Lights: A Comprehensive Guide for Homeowners

Image by rawpixel.com on Freepik Effectively addressing flickering lights in your home is more than just a matter of convenience; it's a pivotal aspect of both home safety and en...

My shins hurt after running. Could it be shin splints?

If you’ve started running for the first time, started again after a break, or your workout is more intense, you might have felt it. A dull, nagging ache down your shins after...

Metal Roof Replacement Cost Per Square Metre in 2025: A Comprehensive Guide for Australian Homeowners

In recent years, the trend of installing metal roofs has surged across Australia. With their reputation for being both robust and visually appealing, it's easy to understand thei...