The Times Australia
Fisher and Paykel Appliances
The Times World News

.

We’ve created a new lens that could take thermal cameras out of spy films and put them into your back pocket

  • Written by Samuel Tonkin, PhD Candidate, College of Science and Engineering, Flinders University
We’ve created a new lens that could take thermal cameras out of spy films and put them into your back pocket

Like something out of a spy movie, thermal cameras make it possible to “see” heat by converting infrared radiation into an image. They can detect infrared light given off by animals, vehicles, electrical equipment and even people – leading to specialised applications in a number of industries.

Despite these applications, thermal imaging technology remains too expensive to be used in many consumer products such as self-driving cars or smartphones.

Our team at Flinders University has been working hard to turn this technology into something we can all use, and not just something we see in spy movies. We’ve developed a low-cost thermal imaging lens that could be scaled up and brought into the lives of everyday people. Our findings are published[1] in the journal Advanced Optical Materials.

Thermal imaging across industries

Thermal imaging has obvious applications in surveillance and security, given its ability to detect the heat signature of people. It’s not surprising defence forces all over the world use this technology – including in Australia[2].

In medicine, it can be used to detect tissues of a higher temperature. This means thermal cameras are useful in the non-invasive detection[3] of tumours, which run at a higher metabolism (and temperature) than healthy tissue.

Thermal imaging even plays a crucial role in space exploration[4]. For instance, it can be used to image distant stars, galaxies and planets, because infrared light can penetrate dust clouds much better than visible light. NASA’s James Webb Space Telescope also takes[5] infrared images – and its ability to see far “redder” wavelengths is opening up new corners of the universe for us.

Read more: Two experts break down the James Webb Space Telescope's first images, and explain what we've already learnt[6]

Addressing the high-cost conundrum

Above are just some examples in a long list of the specialised applications of thermal imaging. Yet this technology could have many more potential uses if it wasn’t so expensive to produce.

The high cost comes, in part, from the materials used to produce the camera lenses. These lenses need to have special properties that allow them to be used with infrared radiation in a way standard lenses can’t.

Most glasses and plastics will absorb infrared radiation, so expensive materials such as germanium or zinc selenide must be used. Both materials can be difficult to manufacture and maintain; germanium[7] is a critical element in short supply, and zinc selenide contains toxic elements[8].

Our team wanted to address the lens challenge head-on. We developed a new polymer made from the low-cost and abundant building blocks of sulfur and cyclopentadiene (an organic compound that takes the form of a colourless liquid).

The cost of the raw materials for the lens we’ve developed is less than one cent per lens. In comparison, some germanium lenses can cost thousands of dollars[9].

This new sulfur-based lens can also be moulded and cast into a variety of complex shapes through common techniques used in the plastics industry. These techniques are simpler and less energy-intensive than those used to create conventional infrared lenses – further reducing the cost and making the polymer more scalable.

The key to developing this material was figuring out how to use cyclopentadiene as a gas for the reaction with sulfur. By doing this, we could precisely control the composition of the resulting polymer – leading to a lens with enhanced capabilities for thermal imaging.

Despite being completely opaque to visible light, the polymer has the highest long-wave infrared transmission of any plastic that has been reported – which means it can be used with a thermal imaging camera.

The lens is black and opaque. Author provided

Possible applications

The development of this material opens doors to many new thermal imaging applications that weren’t possible before.

Self-driving cars could use this technology to detect pedestrians or vehicles – even in low light or fog. Or it could be used in agriculture to monitor irrigation and crop health. Importantly, it would be affordable for farmers.

The new lens is also lightweight, which is helpful for aerial imaging by drone.

Finally, it could be integrated into consumer electronics such as smartphones, computers and home automation systems, to name a few. This would enable users to take thermal images or videos at any time from their phone. It could even be used to create next-generation smoke alarms.

The advances developed in this new study have significantly reduced the barrier to using thermal imaging – and may help revolutionise how it’s used in our everyday lives.

Read more: We've created a device that could allow instant disease diagnosis – while fitting inside your phone lens[10]

Read more https://theconversation.com/weve-created-a-new-lens-that-could-take-thermal-cameras-out-of-spy-films-and-put-them-into-your-back-pocket-206594

Times Magazine

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

Kool Car Hire

Turn Your Four-Wheeled Showstopper into Profit (and Stardom) Have you ever found yourself stand...

EV ‘charging deserts’ in regional Australia are slowing the shift to clean transport

If you live in a big city, finding a charger for your electric vehicle (EV) isn’t hard. But driv...

How to Reduce Eye Strain When Using an Extra Screen

Many professionals say two screens are better than one. And they're not wrong! A second screen mak...

Is AI really coming for our jobs and wages? Past predictions of a ‘robot apocalypse’ offer some clues

The robots were taking our jobs – or so we were told over a decade ago. The same warnings are ...

The Times Features

What’s been happening on the Australian stock market today

What moved, why it moved and what to watch going forward. 📉 Market overview The benchmark S&am...

The NDIS shifts almost $27m a year in mental health costs alone, our new study suggests

The National Disability Insurance Scheme (NDIS) was set up in 2013[1] to help Australians with...

Why Australia Is Ditching “Gym Hop Culture” — And Choosing Fitstop Instead

As Australians rethink what fitness actually means going into the new year, a clear shift is emergin...

Everyday Radiance: Bevilles’ Timeless Take on Versatile Jewellery

There’s an undeniable magic in contrast — the way gold catches the light while silver cools it down...

From The Stage to Spotify, Stanhope singer Alyssa Delpopolo Reveals Her Meteoric Rise

When local singer Alyssa Delpopolo was crowned winner of The Voice last week, the cheers were louder...

How healthy are the hundreds of confectionery options and soft drinks

Walk into any big Australian supermarket and the first thing that hits you isn’t the smell of fr...

The Top Six Issues Australians Are Thinking About Today

Australia in 2025 is navigating one of the most unsettled periods in recent memory. Economic pre...

How Net Zero Will Adversely Change How We Live — and Why the Coalition’s Abandonment of That Aspiration Could Be Beneficial

The drive toward net zero emissions by 2050 has become one of the most defining political, socia...

Menulog is closing in Australia. Could food delivery soon cost more?

It’s been a rocky road for Australia’s food delivery sector. Over the past decade, major platfor...