The Times Australia
The Times World News

.
The Times Real Estate

.

Astronomers detected two major targets with a single telescope – a mysterious signal and its source galaxy

  • Written by Marcin Glowacki, Research Associate, Curtin University
Astronomers detected two major targets with a single telescope – a mysterious signal and its source galaxy

Astronomers have been working to better understand the galactic environments of fast radio bursts (FRBs) – intense, momentary bursts of energy occurring in mere milliseconds and with unknown cosmic origins.

Now, a study of the slow-moving, star-forming gas in the same galaxy found to host an FRB has been published in The Astrophysical Journal[1]. This is only the fourth-ever publication on two completely different areas of astronomy describing the same galaxy.

Even more remarkable is the fact that a single telescope made the discovery possible – from the same observation.

Fast radio mysteries

FRBs, first detected in 2007, are incredibly powerful pulses of radio waves. They originate from distant galaxies, and the signal typically only lasts a few milliseconds.

FRBs are immensely useful for studying the cosmos, from investigating the matter that makes up the universe[2], to even using them to constrain the Hubble constant[3] – the measure of how much the universe is expanding.

Read more: A brief history: what we know so far about fast radio bursts across the universe[4]

However, the origin of FRBs is an ongoing puzzle for astronomers. Some FRBs are known to repeat, sometimes over a thousand times[5]. Others have only been detected once.

Whether these repeating or non-repeating signals have formed differently is currently being investigated by several research groups[6]. At one point, we had more theories on how fast radio bursts are made than detections of them.

It’s an exciting time to be studying FRBs, as showcased by the recent study associating an FRB with a gravitational wave[7]. If that finding holds true, it means at least some FRBs could be created by two neutron stars merging to form a black hole.

However, it is hard to pinpoint where exactly fast radio bursts come from. They are extremely bright yet so brief, getting an accurate position is hard for many radio telescopes. Without knowing where precisely these bursts originate, we cannot study the galaxies they are found in. And without knowing the environments FRBs are formed in, we cannot fully solve their mysteries.

One telescope in Australia is now helping us figure it out.

Some of the ASKAP dishes. CSIRO (Author provided)

The tool for the job

CSIRO’s ASKAP radio telescope[8] (Australian Square Kilometre Array Pathfinder), located in the Western Australian desert, is a remarkable instrument. Made up of an array of 36 dishes separated by up to six kilometres, ASKAP can detect FRBs and pinpoint them to their host galaxies[9].

ASKAP can in fact perform its FRB search at the same time as observations for other science surveys. One such ASKAP survey[10] will map the star-forming gas in galaxies across the Southern sky, helping us understand how galaxies evolve.

During a recent observation for this survey, ASKAP also detected a new FRB, and we were able to identify the galaxy it comes from – a nearby spiral galaxy[11] much like our own Milky Way.

A gas-filled galaxy

ASKAP was able to find the cold neutral hydrogen gas – the source of star formation – in this spiral galaxy. As far as FRB host galaxies go, this is already a rare detection of this gas; only three other cases have been published so far. These had required follow-up observations[12], or relied on other older observations[13], made with different telescopes.

Here, ASKAP gave us both the FRB and the gas surrounding it. It is the first simultaneous detection of these rarely overlapping occurrences.

ASKAP both found the cold hydrogen gas (white contours) in this spiral galaxy, and pinpointed an FRB near the centre (location given by the red ellipse). Glowacki et al. 2023; ESO and ASKAP.

Disturbed gas which ASKAP can detect can give us an indication that a galaxy merger recently happened, which tells us about the star forming history of the galaxy. In turn this gives us clues as to what may cause FRBs.

The previous studies of the gas surrounding FRBs found fast radio bursts reside in very dynamic systems, suggesting tumultuous galaxy mergers triggered the bursts.

For this particular FRB, however, the host galaxy environment is surprisingly calmer. Further studies will be needed to find out if overall we see disturbed gas environments for FRBs, or if there are distinct scenarios – and potentially multiple creation paths – for FRBs.

More to come

Given the uniqueness of such dual detections, this result showcases the strength and versatility of ASKAP. This is the first simultaneous detection of both an FRB and the gas in its host galaxy.

And this is just the start. ASKAP is set to detect and localise over a hundred FRBs a year[14]. By continuing to work collaboratively with each other, different survey groups will be able to untangle the mysteries behind FRBs, how they form, and their host galaxy environments.

CSIRO acknowledges the Wajarri Yamaji as the Traditional Owners and native title holders of the Inyarrimanha Ilgari Bundara, our Murchison Radio-astronomy Observatory site, where ASKAP is located.

References

  1. ^ has been published in The Astrophysical Journal (doi.org)
  2. ^ the matter that makes up the universe (news.ucsc.edu)
  3. ^ to constrain the Hubble constant (academic.oup.com)
  4. ^ A brief history: what we know so far about fast radio bursts across the universe (theconversation.com)
  5. ^ sometimes over a thousand times (iopscience.iop.org)
  6. ^ is currently being investigated by several research groups (academic.oup.com)
  7. ^ associating an FRB with a gravitational wave (theconversation.com)
  8. ^ CSIRO’s ASKAP radio telescope (www.csiro.au)
  9. ^ pinpoint them to their host galaxies (astronomy.curtin.edu.au)
  10. ^ One such ASKAP survey (wallaby-survey.org)
  11. ^ spiral galaxy (astronomy.swin.edu.au)
  12. ^ had required follow-up observations (iopscience.iop.org)
  13. ^ relied on other older observations (iopscience.iop.org)
  14. ^ over a hundred FRBs a year (www.atnf.csiro.au)

Read more https://theconversation.com/astronomers-detected-two-major-targets-with-a-single-telescope-a-mysterious-signal-and-its-source-galaxy-203557

The Times Features

Itinerary to Maximize Your Two-Week Adventure in Vietnam and Cambodia

Two weeks may not seem like much, but it’s just the right time for travelers to explore the best of Vietnam and Cambodia. From the bustling streets of Hanoi to the magnificent te...

How to Protect Your Garden Trees from Wind Damage in Australia

In Australia's expansive landscape, garden trees hold noteworthy significance. They not only enhance the aesthetic appeal of our homes but also play an integral role in the local...

Brisbane Homeowners Warned: Non-Compliant Flexible Hoses Pose High Flood Risk

As a homeowner in Brisbane, when you think of the potential for flood damage to your home, you probably think of weather events. But you should know that there may be a tickin...

Argan Oil-Infused Moroccanoil Shampoo: Nourish and Revitalize Your Hair

Are you ready to transform your hair from dull and lifeless to vibrant and full of life? Look no further than the luxurious embrace of Argan Oil-Infused Moroccanoil Shampoo! In a...

Building A Strong Foundation For Any Structure

Building a home or commercial building can be very exciting. The possibilities are endless and the future is interesting. You can always change aspects of the building to meet the ...

The Role of a Family Dentist: Why Every Household Needs One

source A family dentist isn’t like your regular dentist who may specialise in a particular age group and whom you visit only when something goes wrong. A family dentist takes proa...

Times Magazine

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

How AI-Driven SEO Enhancements Can Improve Headless CMS Content Visibility

Whereas SEO (search engine optimization) is critical in the digital landscape for making connections to content, much of it is still done manually keyword research, metatags, final tweaks at publication requiring a human element that takes extensiv...

Crypto Expert John Fenga Reveals How Blockchain is Revolutionising Charity

One of the most persistent challenges in the charity sector is trust. Donors often wonder whether their contributions are being used effectively or if overhead costs consume a significant portion. Traditional fundraising methods can be opaque, with...

Navigating Parenting Arrangements in Australia: A Legal Guide for Parents

Understanding Parenting Arrangements in Australia. Child custody disputes are often one of the most emotionally charged aspects of separation or divorce. Parents naturally want what is best for their children, but the legal process of determining ...

Blocky Adventures: A Minecraft Movie Celebration for Your Wrist

The Minecraft movie is almost here—and it’s time to get excited! With the film set to hit theaters on April 4, 2025, fans have a brand-new reason to celebrate. To honor the upcoming blockbuster, watchfaces.co has released a special Minecraft-inspir...

The Ultimate Guide to Apple Watch Faces & Trending Wallpapers

In today’s digital world, personalization is everything. Your smartwatch isn’t just a timepiece—it’s an extension of your style. Thanks to innovative third-party developers, customizing your Apple Watch has reached new heights with stunning designs...

LayBy Shopping