The Times Australia
Mirvac Harbourside
The Times World News

.

We used to think diamonds were everywhere. New research suggests they’ve always been rare

  • Written by Carl Walsh, PhD Candidate, Queensland University of Technology
We used to think diamonds were everywhere. New research suggests they’ve always been rare

New research is shedding light on the tumultuous processes that give rise to diamonds, by homing in on a distinct purple companion found alongside them.

Diamonds are highly prized for their qualities but also for their rarity. One way to look for them is to search for associated minerals that occur more commonly, such as the chromium-rich pyrope garnet.

This vibrant purple garnet is easily found by diamond exploration companies, in sediment downstream from potentially diamond-bearing volcanic pipes, and within the pipes themselves. The presence of purple garnet is an indicator diamonds may also be present.

Moreover, this garnet isn’t just found near diamonds, but is also consistently found inside them. So by enhancing our understanding of pyrope garnet, and how it forms, we can also enhance our understanding of diamond formation.

Read more: Perfectly imperfect: the discovery of the second-largest pink diamond has left the world in awe. What gives diamonds their colour?[1]

It was previously thought[2] this type of garnet could not form very deep in the Earth. The theory went that it originated from a different chromium-rich mineral, called spinel, which formed at a shallow depth in the mantle and was then pushed down where temperatures and pressures were higher – leading to the garnet’s formation.

Our latest research, published today[3] in Nature, uses a new model to revisit an old theory that suggests these pyrope garnets are actually formed much deeper in the mantle, about 100km-250km below the present surface. It also suggests diamonds may be rarer than we think.

A bright purple pyrope garnet against a great background.
Pyrope garnets range in colour from lilac to violet. Their colour reflects high metal chromium content. Shutterstock

How diamonds and pyrope garnet form

Diamond is the crystalline form of elemental carbon, stable at very high pressures and relatively low temperatures – accidentally brought to the surface through powerful volcanic eruptions.

The necessary conditions to form diamond at great depth in the Earth’s mantle are only met in a few places. The geographic distribution of diamond is very uneven, with notable concentrations in southern Africa, the Congo, Tanzania, Canada, Siberia and Brazil. All of these places are characterised by ancient continental crust between 2.5 and 3.5 billion years old.

This crust is underlain by deep solid “roots” – like the keel of an iceberg – made of mantle which has become highly chemically depleted through intense melting over time.

It’s here in this depleted mantle, which extends as deep as 250km into the hotter, stirring mantle below it, that diamonds have the best opportunity to form. So what about their chromium-rich companions?

Using a thermodynamic computer model, we were able to demonstrate that pyrope garnets can form very deep in the Earth, at the same depths as diamonds. Specifically, these garnets would have formed during intense heating events with extreme pressures and temperatures in excess of 1,800℃.

Read more: More than just a sparkling gem: what you didn't know about diamonds[4]

How the continents grew their roots

Although this is a very exciting finding in itself, what makes it more relevant is that it informs two other significant theories.

The first relates to why the continents formed the way they did – a point experts have long speculated about.

As mentioned above, pyrope garnets formed in extreme heat upwellings coming from great depths. Our findings suggest these upwellings then melted the upper mantle into place, forming the stable base of the continents.

In other words, the “roots” which help continents remain stable for billions of years are leftovers from the same mantle melting events that produced pyrope garnets.

Read more: Land ahoy: study shows the first continents bobbed to the surface more than 3 billion years ago[5]

Diamond rarity

The second major inference relates to the rarity of diamonds.

Some researchers believe[6] diamonds were not originally rare, but that many were destroyed as the mantle root was eroded and modified due to continental plates moving over the globe. Our model offers the alternative perspective that diamonds may have actually always been rare.

How can we evaluate whether the necessary cradles of diamond – bits of highly depleted mantle in the continental roots – were once common and became rare over time, or whether they have always been rare?

This kaleidoscopic image is a diamond cradle rock under a microscope. In this view, the garnet is the black mineral. Author provided

When intense melting events happened on the early Earth, the melts themselves erupted at the continental surface as very fluid lavas called “komatiites”. These lavas are preserved and are widely analysed. They have varying compositions, and our model predicts which of these could have formed alongside chromium-rich pyrope garnet.

We know from tens of thousands of chemical analyses of komatiite, that the particular composition associated with this pyrope garnet is very rare. That’s because in order for it to form, magma must interact with exceptionally depleted mantle that has gone through many melting events. Only between 8%-28% of komatiite fits this bill.

From this, we can infer that both the pyrope garnets, and the very depleted mantle domains they come from, have always been rare – even back on the early Earth. And because diamonds have an affinity for these particular rocks, they too must have always been rare – making them all the more remarkable.

Read more https://theconversation.com/we-used-to-think-diamonds-were-everywhere-new-research-suggests-theyve-always-been-rare-201784

Mirvac Harbourside

Times Magazine

YepAI Joins Victoria's AI Trade Mission to Singapore for Big Data & AI World Asia 2025

YepAI, a Melbourne-based leader in enterprise artificial intelligence solutions, announced today...

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an onli...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beau...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data anal...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right c...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in t...

The Times Features

Understanding Centrelink Investment Property Valuation: A Guide for Australian Property Owners

Introduction Owning an investment property in Australia can bring financial stability — but it al...

The climate crisis is fuelling extreme fires across the planet

We’ve all seen the alarming images. Smoke belching from the thick forests[1] of the Amazon. Sp...

Applications open for Future Cotton Leaders Program 2026

Applications have opened for the 2026 intake for the Australia Future Cotton Leaders Program (AFCL...

Optimising is just perfectionism in disguise. Here’s why that’s a problem

If you regularly scroll health and wellness content online, you’ve no doubt heard of optimisin...

Macquarie Bank Democratises Agentic AI, Scaling Customer Innovation with Gemini Enterprise

Macquarie’s Banking and Financial Services group (Macquarie Bank), in collaboration with Google ...

Do kids really need vitamin supplements?

Walk down the health aisle of any supermarket and you’ll see shelves lined with brightly packa...

Why is it so shameful to have missing or damaged teeth?

When your teeth and gums are in good condition, you might not even notice their impact on your...

Australian travellers at risk of ATM fee rip-offs according to new data from Wise

Wise, the global technology company building the smartest way to spend and manage money internat...

Does ‘fasted’ cardio help you lose weight? Here’s the science

Every few years, the concept of fasted exercise training pops up all over social media. Faste...