The Times Australia
The Times World News

.
The Times Real Estate

.

Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals

  • Written by Caio Seguin, Postdoctoral research fellow, Indiana University
Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals

Through a vast network of nerve fibres, electrical signals are constantly travelling across the brain. This complicated activity is what ultimately gives rise to our thoughts, emotions and behaviours – but also possibly to mental health and neurological problems when things go wrong[1].

Brain stimulation is an emerging treatment[2] for such disorders. Stimulating a region of your brain with electrical or magnetic pulses will trigger a cascade of signals through your network of nerve connections.

Read more: What is repetitive transcranial magnetic stimulation and how does it actually work?[3]

However, at the moment, scientists are not quite sure how these cascades travel to impact the activity of your brain as a whole – an important missing piece that limits the benefits of brain stimulation therapies.

In our latest research, published in Neuron today[4], we discovered the spread of brain stimulation can be predicted using the mathematics of networks.

Tracking electrical signals in the brain

Studying communication in the human brain is hard. This is because electrical signals move very fast, at the scale of thousandths of a second, between one part of the brain and another.

To make matters more complicated, signals are communicated via an incredibly complex network of nerve fibres that interlinks all brain regions. These issues make it difficult for scientists to even observe signals travelling through the brain.

Read more: Like sightseeing in Paris – a new model for brain communication[5]

However, under very special and controlled circumstances, we can use invasive electrodes to precisely track the propagation of brain signals. Invasive electrodes are instruments that are surgically inserted into the brains of consenting patients.

It is important to stress this type of invasive procedure can only be done in very special circumstances, when the primary goal is to help patients. In our case, patients were people with severe epilepsy. When epilepsy patients do not respond to medication, they can opt to use electrodes to help doctors find out more about what might be happening in their brains.

Our study was based on a large group of 550 epilepsy patient volunteers[6] in more than 20 hospitals across North America, Asia and Europe.

The electrodes provide a way to gently stimulate a brain area with an electrical pulse, and, at the same time, record the patient’s brain activity. We used data from electrodes placed in different positions of the brain to track the communication of electrical pulses from one region to another.

As a last ingredient for our study, we used MRI scans to reconstruct the network of nerve fibres of the human brain, known as the connectome[7]. This gave us a model of the physical wiring through which electrical signals are communicated in the brain.

Three colourful images of the human brain in various stages of abstraction
There are three steps in constructing a model of the connectome. First, we consider the human brain’s anatomy. Then, we use MRI scans to create a 3D model of all nerve connection fibres. Lastly, we reconstruct the brain’s wiring network and use it to understand communication between brain regions. Left: Wikimedia Commons. Centre and right: author provided.

The mathematics of network communication

So, how are signals communicated via the complex wiring of the connectome?

A simple possibility is signals travel via the most direct paths in the connectome. In network terms, this would mean that an electrical pulse goes from one region to another via the shortest path of intermediate regions between them.

Another idea is that signals spread via network diffusion[8]. To understand this, think about how water would flow down a network of pipes.

Each time the water reaches a junction in the network, the flow is split along diverging paths. More junctions along the water’s journey means more splits, and the flow along any given path becomes weaker. However, if some of the diverging paths meet again downstream, the strength of the flow increases again. In this analogy, all connections (pipes) in the network contribute to shaping signal (water) flow, not only the ones along the most direct path.

What we found

These two types of network communication – shortest paths versus diffusive flow – are two competing hypotheses[9] to explain how electrical signals cascade through the wiring of the connectome after brain stimulation. Today, scientists are not sure which hypothesis best matches what happens in the brain.

Our study is one of the first to try to settle this debate. To do this, we asked whether shortest paths or diffusion best predict electrical signal propagation, as measured by the electrodes in the brains of the patients.

After analysing the data, we found evidence supporting the diffusive flow hypothesis. This means that many more nerve connections – compared to just the ones travelling along shortest paths – shape how brain stimulation cascades down the connectome.

This is important information for scientists, as it helps us understand how the physical wiring of nerve connections contributes to brain activity and function.

Read more: Your brain has 'landmarks' that drive neural traffic and help you make hard decisions[10]

What’s next?

Our study is one of the first of its kind and more work is necessary to confirm what we found. We hope that progress in our understanding of brain communication will also help clinical scientists to design better brain stimulation treatments[11] for mental health problems.

Brain stimulation can help to “restore” the malfunctioning communication between brain regions. For example, non-invasive stimulation (done outside the skull and without the need for surgery) is a treatment for major depressive disorder available in Australia[12].

In our future research, we will investigate if the discoveries reported here can be used to improve the therapeutic benefit of such brain stimulation treatments.

Read more https://theconversation.com/electricity-flow-in-the-human-brain-can-be-predicted-using-the-simple-maths-of-networks-new-study-reveals-200831

The Times Features

Best Deals on Home Furniture Online

Key Highlights Discover the best deals on high-quality outdoor furniture online. Transform your outdoor space into a stylish and comfortable oasis. Explore a wide range of d...

Discover the Best Women's Jumpers for Every Season

Key Highlights Explore lightweight jumpers for spring and summer, ensuring breathability and ease. Wrap up warm with cozy wool jumpers for the chilly autumn and winter season...

Uncover the Elegance of Gorgeous Diamond Tennis Necklaces

Key Highlights Diamond tennis necklaces are a timeless piece of jewelry that exudes elegance and sophistication. They feature a continuous line of brilliant-cut diamonds, cre...

Dental Implants vs. Dentures: Which Is Better for You?

When it comes to replacing missing teeth, two of the most common options are dental implants and dentures. Both have their advantages and disadvantages, so choosing between them ...

What Neck Pain Really Means (And Why It’s More Than Just Poor Posture)

Neck pain is often brushed off as something temporary — a tight spot after a long day at the desk or a poor night’s sleep. But when the discomfort keeps returning, it could be a ...

The Work of Gosha Rubchinskiy: Fashion, Culture, and Youth

From Designer to Cultural Architect Gosha Rubchinskiy is not just a fashion designer—he's a cultural force. Born in Moscow in 1984, Rubchinskiy began his career in fashion in t...

Times Magazine

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

LayBy Shopping