The Times Australia
The Times World News

.
The Times Real Estate

.

Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals

  • Written by Caio Seguin, Postdoctoral research fellow, Indiana University
Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals

Through a vast network of nerve fibres, electrical signals are constantly travelling across the brain. This complicated activity is what ultimately gives rise to our thoughts, emotions and behaviours – but also possibly to mental health and neurological problems when things go wrong[1].

Brain stimulation is an emerging treatment[2] for such disorders. Stimulating a region of your brain with electrical or magnetic pulses will trigger a cascade of signals through your network of nerve connections.

Read more: What is repetitive transcranial magnetic stimulation and how does it actually work?[3]

However, at the moment, scientists are not quite sure how these cascades travel to impact the activity of your brain as a whole – an important missing piece that limits the benefits of brain stimulation therapies.

In our latest research, published in Neuron today[4], we discovered the spread of brain stimulation can be predicted using the mathematics of networks.

Tracking electrical signals in the brain

Studying communication in the human brain is hard. This is because electrical signals move very fast, at the scale of thousandths of a second, between one part of the brain and another.

To make matters more complicated, signals are communicated via an incredibly complex network of nerve fibres that interlinks all brain regions. These issues make it difficult for scientists to even observe signals travelling through the brain.

Read more: Like sightseeing in Paris – a new model for brain communication[5]

However, under very special and controlled circumstances, we can use invasive electrodes to precisely track the propagation of brain signals. Invasive electrodes are instruments that are surgically inserted into the brains of consenting patients.

It is important to stress this type of invasive procedure can only be done in very special circumstances, when the primary goal is to help patients. In our case, patients were people with severe epilepsy. When epilepsy patients do not respond to medication, they can opt to use electrodes to help doctors find out more about what might be happening in their brains.

Our study was based on a large group of 550 epilepsy patient volunteers[6] in more than 20 hospitals across North America, Asia and Europe.

The electrodes provide a way to gently stimulate a brain area with an electrical pulse, and, at the same time, record the patient’s brain activity. We used data from electrodes placed in different positions of the brain to track the communication of electrical pulses from one region to another.

As a last ingredient for our study, we used MRI scans to reconstruct the network of nerve fibres of the human brain, known as the connectome[7]. This gave us a model of the physical wiring through which electrical signals are communicated in the brain.

Three colourful images of the human brain in various stages of abstraction
There are three steps in constructing a model of the connectome. First, we consider the human brain’s anatomy. Then, we use MRI scans to create a 3D model of all nerve connection fibres. Lastly, we reconstruct the brain’s wiring network and use it to understand communication between brain regions. Left: Wikimedia Commons. Centre and right: author provided.

The mathematics of network communication

So, how are signals communicated via the complex wiring of the connectome?

A simple possibility is signals travel via the most direct paths in the connectome. In network terms, this would mean that an electrical pulse goes from one region to another via the shortest path of intermediate regions between them.

Another idea is that signals spread via network diffusion[8]. To understand this, think about how water would flow down a network of pipes.

Each time the water reaches a junction in the network, the flow is split along diverging paths. More junctions along the water’s journey means more splits, and the flow along any given path becomes weaker. However, if some of the diverging paths meet again downstream, the strength of the flow increases again. In this analogy, all connections (pipes) in the network contribute to shaping signal (water) flow, not only the ones along the most direct path.

What we found

These two types of network communication – shortest paths versus diffusive flow – are two competing hypotheses[9] to explain how electrical signals cascade through the wiring of the connectome after brain stimulation. Today, scientists are not sure which hypothesis best matches what happens in the brain.

Our study is one of the first to try to settle this debate. To do this, we asked whether shortest paths or diffusion best predict electrical signal propagation, as measured by the electrodes in the brains of the patients.

After analysing the data, we found evidence supporting the diffusive flow hypothesis. This means that many more nerve connections – compared to just the ones travelling along shortest paths – shape how brain stimulation cascades down the connectome.

This is important information for scientists, as it helps us understand how the physical wiring of nerve connections contributes to brain activity and function.

Read more: Your brain has 'landmarks' that drive neural traffic and help you make hard decisions[10]

What’s next?

Our study is one of the first of its kind and more work is necessary to confirm what we found. We hope that progress in our understanding of brain communication will also help clinical scientists to design better brain stimulation treatments[11] for mental health problems.

Brain stimulation can help to “restore” the malfunctioning communication between brain regions. For example, non-invasive stimulation (done outside the skull and without the need for surgery) is a treatment for major depressive disorder available in Australia[12].

In our future research, we will investigate if the discoveries reported here can be used to improve the therapeutic benefit of such brain stimulation treatments.

Read more https://theconversation.com/electricity-flow-in-the-human-brain-can-be-predicted-using-the-simple-maths-of-networks-new-study-reveals-200831

The Times Features

What are physician assistants? Can they fix the doctor shortage?

If you’ve tried to get an appointment to see a GP or specialist recently, you will likely have felt the impact of Australia’s doctor shortages[1]. To alleviate workforce sho...

Do men and women agree on how easy it is for each other to find a job or a date?

Typically, you don’t have to write a cover letter before attending a candlelit dinner. But there are some eerie emotional parallels between finding a job and finding a date. ...

Australia’s clinical guidelines shape our health care. Why do so many still ignore sex and gender?

You’ve heard of the gender pay gap. What about the gap in medical care? Cardiovascular diseases – which can lead to heart attack and stroke – are one of the leading causes[1...

Don't Get Burned—Smart Insurance for Your Investment Property

Real estate investment offers lucrative opportunities even though it brings operational risks. Real estate investment protection fundamentally depends on obtaining the correct insu...

Why it’s important to actively choose the music for your mood

Many of us take pleasure in listening to music[1]. Music accompanies important life events and lubricates social encounters. It represents aspects of our existing identity, a...

The Link Between Heart Health and Ageing Well

Millions of Australians are at risk of heart disease, but fewer realise that keeping their heart healthy can also help protect their brain, memory, and cognitive function, redu...

Times Magazine

Improving Website Performance with a Cloud VPS

Websites represent the new mantra of success. One slow website may make escape for visitors along with income too. Therefore it's an extra offer to businesses seeking better performance with more scalability and, thus represents an added attracti...

Why You Should Choose Digital Printing for Your Next Project

In the rapidly evolving world of print media, digital printing has emerged as a cornerstone technology that revolutionises how businesses and creative professionals produce printed materials. Offering unparalleled flexibility, speed, and quality, d...

What to Look for When Booking an Event Space in Melbourne

Define your event needs early to streamline venue selection and ensure a good fit. Choose a well-located, accessible venue with good transport links and parking. Check for key amenities such as catering, AV equipment, and flexible seating. Pla...

How BIM Software is Transforming Architecture and Engineering

Building Information Modeling (BIM) software has become a cornerstone of modern architecture and engineering practices, revolutionizing how professionals design, collaborate, and execute projects. By enabling more efficient workflows and fostering ...

How 32-Inch Computer Monitors Can Increase Your Workflow

With the near-constant usage of technology around the world today, ergonomics have become crucial in business. Moving to 32 inch computer monitors is perhaps one of the best and most valuable improvements you can possibly implement. This-sized moni...

Top Tips for Finding a Great Florist for Your Sydney Wedding

While the choice of wedding venue does much of the heavy lifting when it comes to wowing guests, decorations are certainly not far behind. They can add a bit of personality and flair to the traditional proceedings, as well as enhancing the venue’s ...

LayBy Shopping