The Times Australia
Google AI
The Times World News

.

Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals

  • Written by Caio Seguin, Postdoctoral research fellow, Indiana University
Electricity flow in the human brain can be predicted using the simple maths of networks, new study reveals

Through a vast network of nerve fibres, electrical signals are constantly travelling across the brain. This complicated activity is what ultimately gives rise to our thoughts, emotions and behaviours – but also possibly to mental health and neurological problems when things go wrong[1].

Brain stimulation is an emerging treatment[2] for such disorders. Stimulating a region of your brain with electrical or magnetic pulses will trigger a cascade of signals through your network of nerve connections.

Read more: What is repetitive transcranial magnetic stimulation and how does it actually work?[3]

However, at the moment, scientists are not quite sure how these cascades travel to impact the activity of your brain as a whole – an important missing piece that limits the benefits of brain stimulation therapies.

In our latest research, published in Neuron today[4], we discovered the spread of brain stimulation can be predicted using the mathematics of networks.

Tracking electrical signals in the brain

Studying communication in the human brain is hard. This is because electrical signals move very fast, at the scale of thousandths of a second, between one part of the brain and another.

To make matters more complicated, signals are communicated via an incredibly complex network of nerve fibres that interlinks all brain regions. These issues make it difficult for scientists to even observe signals travelling through the brain.

Read more: Like sightseeing in Paris – a new model for brain communication[5]

However, under very special and controlled circumstances, we can use invasive electrodes to precisely track the propagation of brain signals. Invasive electrodes are instruments that are surgically inserted into the brains of consenting patients.

It is important to stress this type of invasive procedure can only be done in very special circumstances, when the primary goal is to help patients. In our case, patients were people with severe epilepsy. When epilepsy patients do not respond to medication, they can opt to use electrodes to help doctors find out more about what might be happening in their brains.

Our study was based on a large group of 550 epilepsy patient volunteers[6] in more than 20 hospitals across North America, Asia and Europe.

The electrodes provide a way to gently stimulate a brain area with an electrical pulse, and, at the same time, record the patient’s brain activity. We used data from electrodes placed in different positions of the brain to track the communication of electrical pulses from one region to another.

As a last ingredient for our study, we used MRI scans to reconstruct the network of nerve fibres of the human brain, known as the connectome[7]. This gave us a model of the physical wiring through which electrical signals are communicated in the brain.

Three colourful images of the human brain in various stages of abstraction
There are three steps in constructing a model of the connectome. First, we consider the human brain’s anatomy. Then, we use MRI scans to create a 3D model of all nerve connection fibres. Lastly, we reconstruct the brain’s wiring network and use it to understand communication between brain regions. Left: Wikimedia Commons. Centre and right: author provided.

The mathematics of network communication

So, how are signals communicated via the complex wiring of the connectome?

A simple possibility is signals travel via the most direct paths in the connectome. In network terms, this would mean that an electrical pulse goes from one region to another via the shortest path of intermediate regions between them.

Another idea is that signals spread via network diffusion[8]. To understand this, think about how water would flow down a network of pipes.

Each time the water reaches a junction in the network, the flow is split along diverging paths. More junctions along the water’s journey means more splits, and the flow along any given path becomes weaker. However, if some of the diverging paths meet again downstream, the strength of the flow increases again. In this analogy, all connections (pipes) in the network contribute to shaping signal (water) flow, not only the ones along the most direct path.

What we found

These two types of network communication – shortest paths versus diffusive flow – are two competing hypotheses[9] to explain how electrical signals cascade through the wiring of the connectome after brain stimulation. Today, scientists are not sure which hypothesis best matches what happens in the brain.

Our study is one of the first to try to settle this debate. To do this, we asked whether shortest paths or diffusion best predict electrical signal propagation, as measured by the electrodes in the brains of the patients.

After analysing the data, we found evidence supporting the diffusive flow hypothesis. This means that many more nerve connections – compared to just the ones travelling along shortest paths – shape how brain stimulation cascades down the connectome.

This is important information for scientists, as it helps us understand how the physical wiring of nerve connections contributes to brain activity and function.

Read more: Your brain has 'landmarks' that drive neural traffic and help you make hard decisions[10]

What’s next?

Our study is one of the first of its kind and more work is necessary to confirm what we found. We hope that progress in our understanding of brain communication will also help clinical scientists to design better brain stimulation treatments[11] for mental health problems.

Brain stimulation can help to “restore” the malfunctioning communication between brain regions. For example, non-invasive stimulation (done outside the skull and without the need for surgery) is a treatment for major depressive disorder available in Australia[12].

In our future research, we will investigate if the discoveries reported here can be used to improve the therapeutic benefit of such brain stimulation treatments.

Read more https://theconversation.com/electricity-flow-in-the-human-brain-can-be-predicted-using-the-simple-maths-of-networks-new-study-reveals-200831

Times Magazine

AI threatens to eat business software – and it could change the way we work

In recent weeks, a range of large “software-as-a-service” companies, including Salesforce[1], Se...

Worried AI means you won’t get a job when you graduate? Here’s what the research says

The head of the International Monetary Fund, Kristalina Georgieva, has warned[1] young people ...

How Managed IT Support Improves Security, Uptime, And Productivity

Managed IT support is a comprehensive, subscription model approach to running and protecting your ...

AI is failing ‘Humanity’s Last Exam’. So what does that mean for machine intelligence?

How do you translate ancient Palmyrene script from a Roman tombstone? How many paired tendons ...

Does Cloud Accounting Provide Adequate Security for Australian Businesses?

Today, many Australian businesses rely on cloud accounting platforms to manage their finances. Bec...

Freak Weather Spikes ‘Allergic Disease’ and Eczema As Temperatures Dip

“Allergic disease” and eczema cases are spiking due to the current freak weather as the Bureau o...

The Times Features

5 Cool Ways to Transform Your Interior in 2026

We are at the end of the great Australian summer, and this is the perfect time to start thinking a...

What First-Time Buyers Must Know About Mortgages and Home Ownership

The reality is, owning a home isn’t for everyone. It’s a personal lifestyle decision rather than a...

SHOP 2026’s HOTTEST HOME TRENDS AT LOW PRICES WITH KMART’S FEBRUARY LIVING COLLECTION

Kmart’s fresh new February Living range brings affordable style to every room, showcasing an  insp...

Holafly report finds top global destinations for remote and hybrid workers

Data collected by Holafly found that 8 in 10 professionals plan to travel internationally in 202...

Will Ozempic-style patches help me lose weight? Two experts explain

Could a simple patch, inspired by the weight-loss drug Ozempic[1], really help you shed excess k...

Parks Victoria launches major statewide recruitment drive

The search is on for Victoria's next generation of rangers, with outdoor enthusiasts encouraged ...

Labour crunch to deepen in 2026 as regional skills crisis escalates

A leading talent acquisition expert is warning Australian businesses are facing an unprecedented r...

Technical SEO Fundamentals Every Small Business Website Must Fix in 2026

Technical SEO Fundamentals often sound intimidating to small business owners. Many Melbourne busin...

Most Older Australians Want to Stay in Their Homes Despite Pressure to Downsize

Retirees need credible alternatives to downsizing that respect their preferences The national con...