The Times Australia
Fisher and Paykel Appliances
The Times World News

.

There could be alien life on Mars, but will our rovers be able to find it?

  • Written by Belinda Ferrari, Professor of Microbiology, UNSW Sydney
There could be alien life on Mars, but will our rovers be able to find it?

Robotic rovers are currently exploring the surface of Mars. Part of a rover’s mission is to survey the planet for signs of life. There might be nothing to find – but what if there is, and the rovers just can’t “see” it?

New research published today in Nature Communications[1] suggests the rovers’ current equipment might not actually be up to the task of finding evidence of life.

As an extreme environment microbiologist, the challenges of searching for life where it seems near-impossible are familiar to me.

In astrobiology, we study the diversity of life in sites on Earth with environmental or physical features that resemble regions already described on Mars. We call these terrestrial environments “Mars analogue” sites.

Limits of detection

The new research, led by Armando Azua-Bustos at the Center for Astrobiology in Madrid, tested the sophisticated instruments currently in use by NASA’s Curiosity and Perseverance rovers – as well as some newer lab equipment planned for future analysis – in the Mars analogue of the Atacama Desert.

A red, dusty, barren landscape, with a medium size rock formation. One scientist is climing the rock. Another is crouched at its base.
Scientists take samples from the Atacama Desert’s arid soil. Armando Azua-Bustos/Centro de Astrobiología, CC BY[2]

Azua-Bustos and colleagues found the rovers’ testbed equipment – tools for analysing samples in the field – had limited ability to detect the traces of life we might expect to find on the red planet. They were able to detect the mineral components of the samples, but were not always able to detect organic molecules.

In my team’s case, our Mars analogue sites are the cold and hyper-arid deserts of the Dry Valleys and Windmill Islands in Antarctica.

In both of these sites, life exists despite extreme pressures. Finding evidence of life is challenging, given the harsh conditions and the scarcity of microbial life present.

First, we must define the biological and physical boundaries of life existing (and being detected) in analogue “extreme” environments. Then we need to develop tools to identify the “biosignatures” for life. These include organic molecules like lipids, nucleic acids and proteins. Finally, we determine how sensitive tools need to be to detect those biosignatures, on Earth and also Mars. This tells us the limits of our detection.

Traces of life are scarce in the Atacama Desert.

Read more: Perseverance: the Mars rover searching for ancient life, and the Aussie scientists who helped build it[3]

The search for a dark microbiome

In my field of extreme microbiology, “microbial dark matter” is when the majority of microscopic organisms in a sample have not been isolated and/or characterised. To identify them, we require next-generation sequencing need to define. Azua-Bustos’s team go one step further, proposing a “dark microbiome” which contains potentially relic, extinct Earth species.

Azua-Bustos’s team found sophisticated laboratory techniques could detect a dark microbiome in the Atacama Desert’s Martian-like hyper-arid soil samples. However, the rovers’ current equipment wouldn’t be able to detect it on Mars.

In samples with such scarce biomass, we use highly sensitive laboratory methods to detect microbial life, including gene sequencing and visualising cells using microscopic analysis. Prototypes for genome sequencing in the field are being developed, but they do not have the sensitivity needed for low biomass samples – yet.

Professor Belinda Ferrari in Antarctica. Dr Eden Zhang, Author provided

Read more: There is water on Mars, but what does this mean for life?[4]

Different planet, different rules

The search for life on other planets also relies on our understanding of what life would need to exist, with the simplest list[5] being energy, carbon and liquid water.

On Earth, most organisms use photosynthesis to harness energy from sunlight. This process requires water, which is almost totally unavailable in dry desert environments like Antarctica and the Atacama Desert – and, most likely, Mars. We think a process we dubbed “atmospheric chemosynthesis” could be filling this gap.

My team first discovered atmospheric chemosynthesis in the cold desert soils of Antarctica. In this overlooked metabolic process, bacteria literally “live on thin air[6]” by consuming trace levels of hydrogen and carbon monoxide gas from the atmosphere.

A photo of the vast, barren Antarctic landscape. There is a cloudless blue sky, ice, ocean in the far distance, and a very tiny hut visible in the mid distance.
Antarctica is one of the few places on Earth with permafrost similar to areas on Mars. Dr Belinda Ferrari, Author provided

We think dry desert microbiomes may rely on this process for energy as well as water, which is a byproduct of the process. Ecosystems like the ones we’ve found in Antarctica now offer one of the most promising ecological models[7] in the search for Martian life.

We now believe there is potential for life in the ice-cemented subsurface of Mars. My team – alongside collaborators at NASA and the University of Pretoria – plan to investigate[8] this in Antarctica’s University Valley, by defining the environmental limits to energy, metabolic water and carbon production via trace gas consumption.

A human in a red coat looks tiny, crouching in front of enormous reddish rock formations that have ice in between.
University Valley has a layer of dry permafrost soil overlaying ice-rich permanently frozen ground. Some Martian environments have similar features. Jackie Goordial/McGill University, CC BY[9]

Read more: Discovery of microbe-rich groundwater in Antarctica guides search for life in space[10]

We won’t find what we can’t define

Our new knowledge of target biosignatures and the level of sensitivity needed to detect them will be critical when designing or optimising future instrumentation to be deployed on missions aimed at finding life.

The goal of future missions to Mars, including the Icebreaker Life[11] mission planned for 2026, is to search for evidence of life. The Icebreaker Life will sample ice-cemented ground, similar to Antarctic dry permafrost, and if it detects signs of life, a Mars Sample Return mission would be a high priority.

Returning samples to Earth for laboratory analysis is risky. As we found with our Antarctic soil samples, challenges can include contamination, preservation of cold temperatures during transport, and the need for specialist quarantine laboratories, to analyse samples without destroying them.

But as Asua-Bustos suggests, bringing samples to Earth for detailed lab analyses may be the only sure way to detect – or rule out – the presence (or past presence) of life.

Read more https://theconversation.com/there-could-be-alien-life-on-mars-but-will-our-rovers-be-able-to-find-it-200338

Times Magazine

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

This Christmas, Give the Navman Gift That Never Stops Giving – Safety

Protect your loved one’s drives with a Navman Dash Cam.  This Christmas don’t just give – prote...

Yoto now available in Kmart and The Memo, bringing screen-free storytelling to Australian families

Yoto, the kids’ audio platform inspiring creativity and imagination around the world, has launched i...

The Times Features

Here’s what new debt-to-income home loan caps mean for banks and borrowers

For the first time ever, the Australian banking regulator has announced it will impose new debt-...

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...

Aiper Scuba X1 Robotic Pool Cleaner Review: Powerful Cleaning, Smart Design

If you’re anything like me, the dream is a pool that always looks swimmable without you having to ha...

YepAI Emerges as AI Dark Horse, Launches V3 SuperAgent to Revolutionize E-commerce

November 24, 2025 – YepAI today announced the launch of its V3 SuperAgent, an enhanced AI platf...

What SMEs Should Look For When Choosing a Shared Office in 2026

Small and medium-sized enterprises remain the backbone of Australia’s economy. As of mid-2024, sma...

Anthony Albanese Probably Won’t Lead Labor Into the Next Federal Election — So Who Will?

As Australia edges closer to the next federal election, a quiet but unmistakable shift is rippli...

Top doctors tip into AI medtech capital raise a second time as Aussie start up expands globally

Medow Health AI, an Australian start up developing AI native tools for specialist doctors to  auto...