The Times Australia
Fisher and Paykel Appliances
The Times World News

.

In a new study, we've observed clues that distinguish the very deepest part of Earth's core

  • Written by Thanh-Son Pham, Postdoctoral Fellow in Geophysics, Australian National University
In a new study, we've observed clues that distinguish the very deepest part of Earth's core

Not so long ago, Earth’s interior was thought to be made up of four layers: the crust, mantle, (liquid) outer core and (solid) inner core.

In a new study published today in Nature Communications[1], we provide further evidence for the existence of an “innermost inner core” – a distinct internal metallic ball embedded in the inner core like the most petite Russian nesting doll.

Studying Earth’s centre is not just a topic of academic curiosity, but something that sheds light on the very evolution of life on our planet’s surface.

This is because the inner core grows outwards by solidifying materials from the liquid outer core. As these materials solidify, heat is released and causes upward movement in the liquid layer – what’s known as a convection current. In turn, this convection generates our planet’s geomagnetic field.

The magnetic field protects life on Earth from harmful cosmic radiation[2]. Without the shield it provides, life on Earth would not be possible in the form we know today.

So, understanding the evolutionary history of our planet’s inner core and its connection with the geomagnetic field is relevant to understanding the timeline of life’s evolution on Earth’s surface.

Read more: What makes one Earth-like planet more habitable than another?[3]

Studying the insides of the planet

Like radiologists imaging a patient’s internal organs, seismologists use seismic waves from large earthquakes to study the deep interior of Earth. Earthquakes are our sources, and seismometers recording ground motions or vibrations that move through Earth are our receivers.

However, unlike medical imaging, we do not have the luxury of having sources and receivers equally distributed around the body. Large earthquakes useful for our probes are confined near tectonic margins, such as the Ring of Fire[4] surrounding the Pacific. Meanwhile, seismometers mainly exist on land.

Furthermore, the inner core, which is one-fifth of Earth’s radius[5], accounts for less than 1% of Earth’s volume. To target this relatively small volume in the planet’s centre, seismometers often need to be positioned on the opposite side of the globe, the so-called antipode of an earthquake.

But that’s unlikely in practice because the antipodes of active earthquake zones are often in the ocean, where seismometers are expensive to install.

With the limited data we do have from such antipode measurements, an internal metallic ball within the inner core – the innermost inner core – was hypothesised[6] about 20 years ago, with an estimated radius of about 300km.

Several lines of evidence[7] have confirmed its existence[8], including recent[9] studies[10] from our research group.

Bouncing seismic waves

Now, for the first time, we report observations of seismic waves originating from powerful earthquakes travelling back and forth from one side of the globe to the other up to five times like a ricochet. These new observations are exciting because they provide new probes from different angles of the centremost part of our planet.

A critical advantage of our study was getting data from dense continental-scale networks (consisting of several hundred seismometers) installed around some of the largest quakes.

It differs from previous studies because it uses seismic waves that bounce multiple times within Earth, along its diameter and through its centre. By capturing them, we obtain an unparalleled sampling of the innermost inner core.

A sliced open diagram of a green half sphere with lines going through it and a red small sphere in the centre
Ray paths of fivefold reverberating waves along Earth’s diameter provide a new probe to the distinct internal shell of Earth’s inner core: the innermost inner core. Drew Whitehouse, National Computational Infrastructure’s Vizlab, Australian National University, Author provided (no reuse)

A ball in the centre

The potential difference between the innermost metallic ball and the outer shell of the inner core is not in its chemical composition, like with some other Earth layers. Both are likely made of an iron-nickel alloy with small amounts of lighter chemical elements.

Additionally, the transition from the innermost (solid) ball to the outer shell of the inner core (also solid) seems gradual rather than sharp. That is why we can’t observe it via direct reflections of seismic waves from it. This differs from previous studies documenting sharp boundaries between the other layers inside Earth – from crust to mantle, for example.

So, what precisely did we observe that gives us clues about this innermost inner core?

The observed difference is in anisotropy – a material’s property to let (or propagate) seismic waves faster or slower through it depending on the direction in which they travel.

Different speeds could be caused by different arrangements of iron atoms at high temperatures and pressures, or by the arrangements of atoms when crystals grow.

There is strong evidence[11] that the outer shell of the inner core is anisotropic. The slowest direction of seismic waves is in the equatorial plane (and the fastest is parallel to Earth’s spin axis).

By contrast, in the innermost part of the inner core – as our study of the ricochet waves shows – the slowest direction of propagation forms an oblique angle with the equatorial plane. This is critical, and this is why we can say we’ve detected “distinct” anisotropy in the innermost inner core.

Excitingly, while shallow structures within Earth’s crust and upper mantle are being mapped in incredible detail, we are still at the discovery stage regarding its deepest structures.

However, the image of Earth’s deep interior is getting sharper with the expansion of the dense continental networks, advanced data analysing techniques, and computational capacities.

Read more: Just add (mantle) water: new research cracks the mystery of how the first continents formed[12]

References

  1. ^ published today in Nature Communications (doi.org)
  2. ^ harmful cosmic radiation (climate.nasa.gov)
  3. ^ What makes one Earth-like planet more habitable than another? (theconversation.com)
  4. ^ the Ring of Fire (theconversation.com)
  5. ^ one-fifth of Earth’s radius (onlinelibrary.wiley.com)
  6. ^ was hypothesised (www.pnas.org)
  7. ^ lines of evidence (www.sciencedirect.com)
  8. ^ existence (www.science.org)
  9. ^ recent (agupubs.onlinelibrary.wiley.com)
  10. ^ studies (onlinelibrary.wiley.com)
  11. ^ strong evidence (agupubs.onlinelibrary.wiley.com)
  12. ^ Just add (mantle) water: new research cracks the mystery of how the first continents formed (theconversation.com)

Read more https://theconversation.com/in-a-new-study-weve-observed-clues-that-distinguish-the-very-deepest-part-of-earths-core-200258

Times Magazine

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

Mapping for Trucks: More Than Directions, It’s Optimisation

Daniel Antonello, General Manager Oceania, HERE Technologies At the end of June this year, Hampden ...

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

Home batteries now four times the size as new installers enter the market

Australians are investing in larger home battery set ups than ever before with data showing the ...

Q&A with Freya Alexander – the young artist transforming co-working spaces into creative galleries

As the current Artist in Residence at Hub Australia, Freya Alexander is bringing colour and creativi...

The Times Features

Why a Holiday or Short Break in the Noosa Region Is an Ideal Getaway

Few Australian destinations capture the imagination quite like Noosa. With its calm turquoise ba...

How Dynamic Pricing in Accommodation — From Caravan Parks to Hotels — Affects Holiday Affordability

Dynamic pricing has quietly become one of the most influential forces shaping the cost of an Aus...

The rise of chatbot therapists: Why AI cannot replace human care

Some are dubbing AI as the fourth industrial revolution, with the sweeping changes it is propellin...

Australians Can Now Experience The World of Wicked Across Universal Studios Singapore and Resorts World Sentosa

This holiday season, Resorts World Sentosa (RWS), in partnership with Universal Pictures, Sentosa ...

Mineral vs chemical sunscreens? Science shows the difference is smaller than you think

“Mineral-only” sunscreens are making huge inroads[1] into the sunscreen market, driven by fears of “...

Here’s what new debt-to-income home loan caps mean for banks and borrowers

For the first time ever, the Australian banking regulator has announced it will impose new debt-...

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...

Transforming Addiction Treatment Marketing Across Australasia & Southeast Asia

In a competitive and highly regulated space like addiction treatment, standing out online is no sm...