The Times Australia
The Times World News

.
The Times Real Estate

.

Why does lightning zigzag? At last, we have an answer to the mystery

  • Written by John Lowke, Adjunct Research Professor of Physics, University of South Australia
Why does lightning zigzag? At last, we have an answer to the mystery

Everyone has seen lightning and marvelled at its power. But despite its frequency – about 8.6 million lightning strikes occur worldwide every day – why lightning proceeds in a series of steps from the thundercloud to the earth below has remained a mystery.

There are a few textbooks on lightning, but none have explained how these “zigzags” (called steps) form, and how lightning can travel over kilometres. My new research[1] provides an explanation.

The intense electrical fields in thunderclouds excite electrons to have enough energy to create what are known as “singlet delta oxygen molecules”. These molecules and electrons build up to create a short, highly conducting step, which lights up intensely for a millionth of a second.

At the end of the step, there is a pause as the build-up happens again, followed by another bright, flashing leap. The process is repeated again and again.

An increase in extreme weather events means lightning protection is increasingly important. Knowing how a lightning strike is initiated means we can work out how to better protect buildings, aeroplanes and people. Also, while the use of environmentally friendly composite materials in aircraft is improving fuel efficiency, these materials increase the risk of lightning damage[2], so we need to look at additional protection.

storm clouds
An increase in atmospheric moisture and warmth is fuelling more intense storms. Shutterstock

What leads up to a lightning strike?

Lightning strikes happen when thunderclouds with an electric potential of millions of volts are connected to the earth. A current of thousands of amps flows between the ground and the sky, with a temperature of tens of thousands of degrees.

Photographs of lightning reveal a host of details not observed by the naked eye. Usually there are four or five faint “leaders” coming from the cloud. These are branched and zigzag on an irregular path towards the earth.

The first of these leaders to reach the earth initiates the lightning strike. The other leaders are then extinguished.

Fifty years ago, high-speed photography revealed still more complexity. The leaders progress downwards from the cloud in “steps” about 50 metres long. Each step becomes bright for a millionth of a second, but then there is almost complete darkness. After a further 50 millionths of a second another step forms, at the end of the preceding step, but the previous steps remain dark.

Why are there such steps? What is happening in the dark periods between steps? How can the steps be electrically connected to the cloud with no visible connection?

The answers to these questions lie in understanding what happens when an energetic electron hits an oxygen molecule. If the electron has enough energy, it excites the molecule into the singlet delta state. This is a “metastable” state, which means it is not perfectly stable – but it usually doesn’t fall into a lower energy state for 45 minutes or so.

Oxygen in this singlet delta state detaches electrons (required for electricity to flow) from negative oxygen ions. These ions are then replaced almost immediately by electrons (which carry a negative charge) again attaching to oxygen molecules. When more than 1% of the oxygen in the air is in the metastable state, the air can conduct electricity.

So the lightning steps occur as enough of the metastable states are created to detach a significant number of electrons. During the dark part of a step, the density of metastable states and electrons is increasing. After 50 millionths of a second, the step can conduct electricity – and the electrical potential at the tip of the step increases to approximately that of the cloud, and produces a further step.

The excited molecules created in previous steps form a column all the way to the cloud. The whole column is then electrically conducting, with no requirement of an electric field and little emission of light.

Protecting people and property

The understanding of lightning formation is important for the design of protection for buildings, aircraft and also people. While it is rare for lightning to hit people[3], buildings are hit many times – especially tall and isolated ones.

When lightning hits a tree, sap inside the tree boils and the resulting steam creates pressure, splitting open the trunk. Similarly, when lightning hits the corner of a building, water from rain that has seeped into the concrete boils. The pressure blasts off the whole corner of the building, creating the risk of deadly collapses.

A blackened tree shattered by a lightning strike
By causing water inside structures to boil, a lightning strike can blast apart trees and buildings. Shutterstock

A lightning rod invented by Benjamin Franklin in 1752 is basically a thick fencing wire attached to the top of a building and connected to the ground. It is designed to attract lightning and earth the electric charge. By directing the flow through the wire, it saves the building from being damaged.

These Franklin rods are required for tall buildings and churches today, but the uncertain factor is how many are needed on each structure.

Furthermore, hundreds of structures are not protected, including shelter sheds in parks. These structures are often made from highly conductive galvanized iron, which itself attracts lightning, and supported by wooden posts.

The new version of Standards Australia for lightning protection recommends such shelters be earthed.

References

  1. ^ new research (iopscience.iop.org)
  2. ^ increase the risk of lightning damage (www.compositesworld.com)
  3. ^ rare for lightning to hit people (www.uwa.edu.au)

Read more https://theconversation.com/why-does-lightning-zigzag-at-last-we-have-an-answer-to-the-mystery-195549

The Times Features

Best Deals on Home Furniture Online

Key Highlights Discover the best deals on high-quality outdoor furniture online. Transform your outdoor space into a stylish and comfortable oasis. Explore a wide range of d...

Discover the Best Women's Jumpers for Every Season

Key Highlights Explore lightweight jumpers for spring and summer, ensuring breathability and ease. Wrap up warm with cozy wool jumpers for the chilly autumn and winter season...

Uncover the Elegance of Gorgeous Diamond Tennis Necklaces

Key Highlights Diamond tennis necklaces are a timeless piece of jewelry that exudes elegance and sophistication. They feature a continuous line of brilliant-cut diamonds, cre...

Dental Implants vs. Dentures: Which Is Better for You?

When it comes to replacing missing teeth, two of the most common options are dental implants and dentures. Both have their advantages and disadvantages, so choosing between them ...

What Neck Pain Really Means (And Why It’s More Than Just Poor Posture)

Neck pain is often brushed off as something temporary — a tight spot after a long day at the desk or a poor night’s sleep. But when the discomfort keeps returning, it could be a ...

The Work of Gosha Rubchinskiy: Fashion, Culture, and Youth

From Designer to Cultural Architect Gosha Rubchinskiy is not just a fashion designer—he's a cultural force. Born in Moscow in 1984, Rubchinskiy began his career in fashion in t...

Times Magazine

The Essential Guide to Transforming Office Spaces for Maximum Efficiency

Why Office Fitouts MatterA well-designed office can make all the difference in productivity, employee satisfaction, and client impressions. Businesses of all sizes are investing in updated office spaces to create environments that foster collaborat...

The A/B Testing Revolution: How AI Optimized Landing Pages Without Human Input

A/B testing was always integral to the web-based marketing world. Was there a button that converted better? Marketing could pit one against the other and see which option worked better. This was always through human observation, and over time, as d...

Using Countdown Timers in Email: Do They Really Increase Conversions?

In a world that's always on, where marketers are attempting to entice a subscriber and get them to convert on the same screen with one email, the power of urgency is sometimes the essential element needed. One of the most popular ways to create urg...

Types of Software Consultants

In today's technology-driven world, businesses often seek the expertise of software consultants to navigate complex software needs. There are several types of software consultants, including solution architects, project managers, and user experienc...

CWU Assistive Tech Hub is Changing Lives: Win a Free Rollator Walker This Easter!

🌟 Mobility. Independence. Community. All in One. This Easter, the CWU Assistive Tech Hub is pleased to support the Banyule community by giving away a rollator walker. The giveaway will take place during the Macleod Village Easter Egg Hunt & Ma...

"Eternal Nurture" by Cara Barilla: A Timeless Collection of Wisdom and Healing

Renowned Sydney-born author and educator Cara Barilla has released her latest book, Eternal Nurture, a profound collection of inspirational quotes designed to support mindfulness, emotional healing, and personal growth. With a deep commitment to ...

LayBy Shopping