The Times Australia
The Times World News

.
The Times Real Estate

.

Folded diamond has been discovered in a rare type of meteorite. How is this possible?

  • Written by Andrew Tomkins, Geologist, Monash University
Folded diamond has been discovered in a rare type of meteorite. How is this possible?

A “folded diamond” doesn’t sound entirely plausible. But that’s exactly what we’ve found inside a rare group of meteorites known as ureilites, which likely came from the mantle of a dwarf planet[1] or very large asteroid that was destroyed 4.56 billion years ago in a giant collision.

Within these space rocks, we found layered diamonds with distinctive fold patterns. Our discovery is published today in the journal Proceedings of the National Academy of Sciences[2].

Now of course, everyone knows diamond is the hardest naturally occurring material[3], so the obvious question was – how on Earth (or in space!) could a folded diamond possibly form?!

This was exactly the sort of curiosity-piquing observation that sends scientists diving down rabbit holes for months on end.

A new analysis technique

Carbon, one of the most abundant elements in the universe, can form all kinds of structures. Among the more familiar ones are graphite and, of course, diamond. But there’s also an unusual hexagonal form of diamond known as lonsdaleite, which has been suggested to be even harder than standard cubic diamonds.

A red, yellow and purple coloured marbling on a turquoise background
Distribution of lonsdaleite in yellow, diamond in pink, iron in red, silicon in green, and magnesium in blue within a meteorite detected by electron probe microanalysis. Nick Wilson[4]

Our team includes a bunch of people who drive development of advanced analysis techniques. At CSIRO, Nick Wilson, Colin MacRae and Aaron Torpy developed a new approach in electron microscopy to map the distribution of diamond, graphite and lonsdaleite in the meteorites.

When our mapping suggested the folded diamond might actually be lonsdaleite, we – Dougal McCulloch, Alan Salek and Matthew Field at RMIT – performed a more detailed investigation via a method called high-resolution transmission electron microscopy (TEM[5]).

The results were exciting: we had found some of the largest lonsdaleite crystallites (microscopic crystals) ever discovered, about 1 micrometre across. So, those intriguing fold shapes were composed of polycrystalline lonsdaleite, meaning they were made from numerous tiny crystals.

Folded structures visible in a greyscale image and the same visible in purple underneath
Microscope photo (top) and cathodoluminescence map (bottom) of folded lonsdaleite, purple, with diamond in green-yellow (field of view 0.25 mm). PNAS, 2022, Author provided

Reconstructing the cataclysm

And there was even more. We found the lonsdaleite had been partially converted to diamond and graphite, giving us clues to the sequence of events that had happened in the meteorites. Follow-up work at the Australian Synchrotron by Helen Brand confirmed this result.

By comparing the diamond, graphite and lonsdaleite across 18 different ureilite meteorites, we started to form a picture of what probably happened to produce the folded structures we found. At the first stage, graphite crystals folded deep inside the mantle of the asteroid thanks to high temperatures causing the other surrounding minerals to grow, pushing aside the graphite crystals. (You can see this in the schematic below.)

Complex chart showing the stages of an asteroid crumbling apart
Schematic indicating the timing and positions of diamond and lonsdaleite formation as the ureilite parent asteroid was partially destroyed by a giant impact (Ol, olivine; Px, pyroxene). PNAS, 2022, Author provided

The second stage happened in the aftermath of the gigantic collision that catastrophically disrupted the ureilite parent asteroid. Evidence in the meteorites[6] suggested the disruption event produced a rich mix of fluids and gases as it progressed.

This mix then caused lonsdaleite to form by replacement of the folded graphite crystals, almost perfectly preserving the intricate textures of the graphite. Of course, it’s not actually possible to fold lonsdaleite or diamond – it formed by replacement of pre-existing shapes.

We think this was driven by the hot fluid mix as pressure and temperature dropped immediately after the cataclysm. Then, shortly after, diamond and graphite partially replaced the lonsdaleite as the fluid further decompressed and cooled to form a gas mixture.

Read more: How rare minerals form when meteorites slam into Earth[7]

Manufacturing clues from nature

The process is quite similar to a process used to manufacture diamonds known as chemical vapour deposition[8]. These manufactured diamonds are widely used in industry today, particularly for cutting and grinding because diamond is so hard. The difference is that we think the lonsdaleite replaced the shaped graphite at moderately higher pressures than those normally used to grow diamonds, from a supercritical fluid[9] rather than a gas.

So, nature appears to have given us clues on how to make shaped ultra-hard micro machine parts! If we can find a way to replicate the process preserved in the meteorites, we can make these machine parts by replacement of pre-shaped graphite with lonsdaleite.

Being able to study these weird folded diamonds was possible because lead author Andrew Tomkins had time to follow his nose – we call this type of research “curiosity-driven science”. However, although curiosity-driven science produces important breakthroughs[10], it isn’t normally funded by major funding agencies. They like to see well thought-out details for grand projects that already have a solid foundation of prior research.

We think a good way to boost Australia’s innovation would be to provide recognised science innovators a small grant annually to spend on research as they see fit; no questions asked, no justification or follow-up required.

For curiosity-driven research like our project, scientists need a small amount of time (and money) that can be spent with complete freedom; this produces the creativity[11] that drives innovation. You never know what else we might find out there.

Read more: We created diamonds in mere minutes, without heat — by mimicking the force of an asteroid collision[12]

Read more https://theconversation.com/folded-diamond-has-been-discovered-in-a-rare-type-of-meteorite-how-is-this-possible-190134

The Times Features

What are physician assistants? Can they fix the doctor shortage?

If you’ve tried to get an appointment to see a GP or specialist recently, you will likely have felt the impact of Australia’s doctor shortages[1]. To alleviate workforce sho...

Do men and women agree on how easy it is for each other to find a job or a date?

Typically, you don’t have to write a cover letter before attending a candlelit dinner. But there are some eerie emotional parallels between finding a job and finding a date. ...

Australia’s clinical guidelines shape our health care. Why do so many still ignore sex and gender?

You’ve heard of the gender pay gap. What about the gap in medical care? Cardiovascular diseases – which can lead to heart attack and stroke – are one of the leading causes[1...

Don't Get Burned—Smart Insurance for Your Investment Property

Real estate investment offers lucrative opportunities even though it brings operational risks. Real estate investment protection fundamentally depends on obtaining the correct insu...

Why it’s important to actively choose the music for your mood

Many of us take pleasure in listening to music[1]. Music accompanies important life events and lubricates social encounters. It represents aspects of our existing identity, a...

The Link Between Heart Health and Ageing Well

Millions of Australians are at risk of heart disease, but fewer realise that keeping their heart healthy can also help protect their brain, memory, and cognitive function, redu...

Times Magazine

Improving Website Performance with a Cloud VPS

Websites represent the new mantra of success. One slow website may make escape for visitors along with income too. Therefore it's an extra offer to businesses seeking better performance with more scalability and, thus represents an added attracti...

Why You Should Choose Digital Printing for Your Next Project

In the rapidly evolving world of print media, digital printing has emerged as a cornerstone technology that revolutionises how businesses and creative professionals produce printed materials. Offering unparalleled flexibility, speed, and quality, d...

What to Look for When Booking an Event Space in Melbourne

Define your event needs early to streamline venue selection and ensure a good fit. Choose a well-located, accessible venue with good transport links and parking. Check for key amenities such as catering, AV equipment, and flexible seating. Pla...

How BIM Software is Transforming Architecture and Engineering

Building Information Modeling (BIM) software has become a cornerstone of modern architecture and engineering practices, revolutionizing how professionals design, collaborate, and execute projects. By enabling more efficient workflows and fostering ...

How 32-Inch Computer Monitors Can Increase Your Workflow

With the near-constant usage of technology around the world today, ergonomics have become crucial in business. Moving to 32 inch computer monitors is perhaps one of the best and most valuable improvements you can possibly implement. This-sized moni...

Top Tips for Finding a Great Florist for Your Sydney Wedding

While the choice of wedding venue does much of the heavy lifting when it comes to wowing guests, decorations are certainly not far behind. They can add a bit of personality and flair to the traditional proceedings, as well as enhancing the venue’s ...

LayBy Shopping